Implicación de las Fusariotoxinas en la producción avícola. Revisión
DOI:
https://doi.org/10.22319/rmcp.v15i2.6090Palabras clave:
Micotoxinas, fusariotoxinas, aves, hongosResumen
Las micotoxinas son metabolitos secundarios producidos por hongos de diversos géneros. Dentro de las micotoxinas más importantes se encuentran aquellas producidas por hongos del género Fusarium sp., el cual puede dividirse en varios grupos para su estudio que son el grupo de los tricotecenos (y toxina T-2), de las fumonisinas, principalmente fumonisina B1 (B1, B2, B3, B4, A1 Y A2) y de la zearalenona de efectos estrogénicos. Aunque las fusariotoxinas causan efectos similares debido a que comparten el mismo mecanismo de acción; mediante la alteración de síntesis de proteínas en las aves intoxicadas, es importante mencionar la incidencia, así como las características entre cada una de ellas. Es por esto que en cada apartado se describen las características de cada grupo mencionado.
Descargas
Citas
Mallmann CA, Hummes R, Giacomini L. Factores de formación de las micotoxinas y sus formas de control. Engormix; 2007; https://www.engormix.com/micotoxinas/articulos/factores-formacion-micotoxinas-sus-t27383.htm. Consultado 10 Jul, 2023.
Rojas JL, Gutiérrez R, Orantes MA, Manzur A. Contaminación por micotoxinas de la leche y derivados lácteos. Quehacer Científico en Chiapas 2017;12(1):90-103.
Placinta C, D'Mello JF, Macdonald A. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Technol 1999;78(1-):21-37.
Antonissen G, Croubels S, Pasmans F, Ducatelle R, Eeckhaut V, Devreese M, et al. Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis. Vet Res 2015;46(1):98.
Gimeno A, Martins ML. Micotoxinas y micotoxicosis en animales y humanos. Special Nutrients. Florida 2011;50-53.
Guerre P. Fusariotoxins in avian species: Toxicokinetics, metabolism and persistence in tissues. Toxins 2015;7(6):2289-2305.
Chen SS, Li YH, Lin MF. Chronic exposure to the Fusarium mycotoxin deoxynivalenol: Impact on performance, immune organ, and intestinal integrity of slow-growing chickens. Toxins 2017;9(10):334.
Springler A, Vrubel GM, Mayer E, Schatzmayr G, Novak B. Effect of Fusarium-derived metabolites on the barrier integrity of differentiated intestinal porcine epithelial cells (IPEC-J2). Toxins 2016;8(11):345.
Ekwomadu TI, Akinola SA, Mwanza DM. Fusarium mycotoxins, their metabolites (free, emerging, and masked), food safety concerns, and health impacts. Int J Environ Res Public Health 2021;18(22):11741.
Lessard M, Savard C, Deschene K, Lauzon K, Pinilla VA, Lapointe J, Guay F, Chorfi Y. Impact of deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food Chem Toxicol 2015;80:7-16.
Čonková E, Laciakova A, Kováč G, Seidel H. Fusarial toxins and their role in animal diseases. Vet J 2003;165(3):214-220.
Cope RB. Trichothecenes, in Veterinary Toxicology. 2018, Elsevier; 2018:1043-1053.
Brake J, Hamilton P, Kittrell R. Effects of the trichothecene mycotoxin diacetoxyscirpenol on feed consumption, body weight, and oral lesions of broiler breeders. Poult Sci 2000;79(6):856-863.
Eriksen GS, Pettersson H. Toxicological evaluation of trichothecenes in animal feed. Anim Feed Sci Technol 2004;114(1-4):205-239.
Bertero A, Moretti A, Spicer LJ, Caloni F. Fusarium molds and mycotoxins: Potential species-specific effects. Toxins 2018;10(6):244.
Wu Q, Dohnal V, Huang L, Kuča K, Yuan Z. Metabolic pathways of trichothecenes. Drug Metab Rev 2010;42(2):250-267.
Soriano del Castillo JM. Micotoxinas en alimentos. 1a ed. España. Ediciones Díaz de Santos; 2007.
Sokolović M, Garaj-Vrhovac V, Šimpraga B. T-2 toxin: incidence and toxicity in poultry. Arh Hig Rada Toksikol 2008;59(1):43-52.
Li SJ, Zhang G, Xue B, Ding Q, Han L, Huang JC, Wu F, Li C, Yang C. Toxicity and detoxification of T-2 toxin in poultry. Food Chem Toxicol 2022;113392.
Eskola M, Kos G, Elliott CT, Hajšlová J, Mayar S, Krska R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’of 25%. Crit Rev Food Sci Nutr 2020;60(16):2773-2789.
Kulcsár S, Kövesi B, Balogh K, Zándoki E, Ancsin Z, Erdélyi M, Mézes M. The co-occurrence of t-2 toxin, deoxynivalenol, and fumonisin b1 activated the glutathione redox system in the eu-limiting doses in laying hens. Toxins 2023;15(5):305.
Bryden WL. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim Feed Sci Technol 2012;173(1-2):134-158.
Mokubedi SM, Phoku JZ, Changwa NR, Gbashi S, Njobeh, PB. Analysis of mycotoxins contamination in poultry feeds manufactured in selected provinces of South Africa using UHPLC-MS/MS. Toxins 2019;11(8):452.
Harčárová M, Naď P. Incidence of trichothecenes deoxynivalenol and t-2 toxin in poultry feed mixtures. Folia Vet 2023;67(2):18-23.
Shar ZH, Shar HH, Jatoi A, Sherazi STH, Mahesar SA, Khan E, Phanwar QK. Natural co-occurrence of Fusarium toxins in poultry feed and its ingredients. JCF 2020;15:341-350.
Pestka JJ, Zhou HR, Moon Y, Chung YJ. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett 2004;153(1):61-73.
Jaradat ZW. T-2 mycotoxin in the diet and its effects on tissues. In: Reviews in food and nutrition toxicity. 1a ed. Florida, USA: CRC Press Taylor & Francis Group; 2005;173-212.
Bouaziz C, El Golli E, Abid-Essefi S, Brenner C, Lemaire C, Bacha H. Different apoptotic pathways induced by zearalenone, T-2 toxin and ochratoxin A in human hepatoma cells. Toxicol 2008;254(1-2):19-28.
Corrier D. Mycotoxicosis: mechanisms of immunosuppression. Vet Immunol Immunopathol 1991;30(1):73-87.
Nagata T, Suzuki H, Ishigami N, Shinozuka J, Uetsuka K, Nakayama H, Doi K. Development of apoptosis and changes in lymphocyte subsetsin thymus, mesenteric lymph nodes and Peyer's patches of mice orally inoculated with T-2 toxin. Exp Toxicol Pathol 2001;53(4):309-315.
Broekaert N, Devreese M, De Boevre M, De Saeger S, Croubels S. T-2 toxin-3α-glucoside in broiler chickens: Toxicokinetics, absolute oral bioavailability, and in vivo hydrolysis. J Agric Food Chem 2017;65(23):4797-4803.
Grizzle JM, Kersten DB, Houston AE, Saxton AM. Effect of chronic vs intermittent exposure to t-2 toxin on reproductive. Int J Poult Sci 2005;4(2):71-75.
Patil RD, Sharma R, Asrani RK. Mycotoxicosis and its control in poultry: A review. J Poultry Sci Technol 2014;2(1):1-10.
Edrington TS, Kubena LF, Harvey RB, Rottinghaus G. Influence of a superactivated charcoal on the toxic effects of aflatoxin or T-2 toxin in growing broilers. Poult Sci 1997;76(9):1205-1211.
Wyatt RD, Colwell WM, Hamilton PB, Burmeister HR. Neural disturbances in chickens caused by dietary T-2 toxin. Appl Microbiol 1973;26(5):757-761.
Osselaere A. Influence of deoxynivalenol and T-2 toxin on the intestinal barrier and liver function in broiler chickens. [doctoral thesis]. Ghent, Belgium: Ghent University 2013.
Escrivá L, Font G, Manyes L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food Chem Toxicol 2015;78:185-206.
Tobias S, Rajic I, Vanyi A. Effect of T-2 toxin on egg production and hatchability in laying hens. Acta Vet Hung 1992;40(1-2):47-54.
Kubena LF, Huff WE, Harvey RB, Phillips TD, Rottinghaus GE. Individual and combined toxicity of deoxynivalenol and T-2 toxin in broiler chicks. Poult Sci 1989;68(5):622-626.
DSM. Dutch State Mines. DSM World Mycotoxin Survey. 2023; https://www.dsm.com/anh/products-and-services/tools/mycotoxin- contamination/biomin-mycotoxin-survey.html. Accesed 10 Jul, 2023.
Zhou H, Guog T, Dai H, Yu Y, Zhang Y, Ma L. Deoxynivalenol: Toxicological profiles and perspective views for future research. World Mycotoxin J 2020;13(2):179-188.
Smith MC, Timmins-Schiffman E, Coton M, Coton E, Hymery N, Nunn BL. Differential impacts of individual and combined exposures of deoxynivalenol and zearalenone on the HepaRG human hepatic cell proteome. J Proteomics 2018;173:89-98.
Grenier B, Applegate TJ. Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins 2013;5(2):396-430.
Sun Y, Jiang, J, Mu P, Lin R, Wen J, Deng Y. Toxicokinetics and metabolism of deoxynivalenol in animals and humans. Arch Toxicol 2022;96(10):2639-2654.
Awad W, Ghareeb K, Böhm J, Zentek J. The toxicological impacts of the Fusarium mycotoxin, deoxynivalenol, in poultry flocks with special reference to immunotoxicity. Toxins 2013;5(5):912-925.
Awad WA, Ghareeb K, Bohm J, Razzazi E, Hellweg P, Zentek J. The impact of the Fusarium toxin deoxynivalenol (DON) on poultry. Int J Poult Sci 2008;7(9):827-842.
Ji J, Zhang D, Ye J, Zheng Y, Cui J, Sun X. Mycotoxin DB: a data-driven platform for investigating masked forms of mycotoxins. J Agric Food Chem 2023;71(24):9501-9507.
Singh K, Kumari A. Masked and new mycotoxins. In: Mycotoxins and mycotoxicoses. USA: Springer; 2022:137-144.
Goyarts T, Grove N, Dänicke S. Effects of the Fusarium toxin deoxynivalenol from naturally contaminated wheat given subchronically or as one single dose on the in vivo protein synthesis of peripheral blood lymphocytes and plasma proteins in the pig. Food Chem Toxicol 2006;44(12):1953-1965.
Awad WA, Aschenbach JR, Setyabudi FMCS, Razzazi-Fazeli E, Böhm J, Zentek J. In vitro effects of deoxynivalenol on small intestinal D-glucose uptake and absorption of deoxynivalenol across the isolated jejunal epithelium of laying hens. Poult Sci 2007;86(1):15-20.
Yunus AW, Blajet-Kosicka A, Kosicky R, Khan MZ, Rehman H, Böhm J. Deoxynivalenol as a contaminant of broiler feed: Intestinal development, absorptive functionality, and metabolism of the mycotoxin. Poult Sci 2012;91(4):852-861.
Pinton P, Oswald IP. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: A review. Toxins 2014;6(5):1615-1643.
Pinton P, Nougayréde JP, Del Río JC, Moreno C, Marin DE, Ferrier L, Bracarense AP, Kolf-Clauw M, Oswald IP. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicol. Appl Pharmacol 2009;237(1):41-48.
Ghareeb K, Awad WA, Böhm J. Ameliorative effect of a microbial feed additive on infectious bronchitis virus antibody titer and stress index in broiler chicks fed deoxynivalenol. Poult Sci 2012;91(4):800-807.
Dersjant-Li Y, Verstegen MW, Gerrits WJ. The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutr Res Rev 2003;16(2):223-239.
Awad WA, Böhm J, Razzazi- Fazeli E, Zentek J. Effects of feeding deoxynivalenol contaminated wheat on growth performance, organ weights and histological parameters of the intestine of broiler chickens. J Anim Physiol Anim Nutr 2006;90(1‐2):32-37.
Gimeno A, Martins ML. Mycotoxins and mycotoxicosis in animals and humans. 2a ed. Miami, Florida USA: Special Nutrients; 2011.
Kamle M, Mahato DK, Devi S, Lee KE, Kang SG, Kumar P. Fumonisins: Impact on agriculture, food, and human health and their management strategies. Toxins 2019;11(6):328.
Marın S, Magan N, Belli N, Ramos AJ, Canela R, Sanchis V. Two-dimensional profiles of fumonisin B1 production by Fusarium moniliforme and Fusarium proliferatum in relation to environmental factors and potential for modelling toxin formation in maize grain. Int J Food Microbiol 1999;51(2-3):159-167.
Samapundo S, Devliehgere F, De Meulenaer B, Debevere J. Effect of water activity and temperature on growth and the relationship between fumonisin production and the radial growth of Fusarium verticillioides and Fusarium proliferatum on corn. J Food Prot 2005; 68(5):1054-1059.
Todorova KS, Krill AI, Dimitrov PS, Gardeva EG, Toshkova RA, Tasheva YR, et al. Effect of fumonisin B1 on lymphatic organs in broiler chickens-pathomorphology. Bull Vet Inst Pulawy 2011;55:801-805.
Masching S, Naehrer K, Schawartz-Zimmermann HE, Sárándan M, Schaumberger S, Dohnal I, Nagl V, Schatzmayr. Gastrointestinal degradation of fumonisin B1 by carboxylesterase FumD prevents fumonisin induced alteration of sphingolipid metabolism in turkey and swine. Toxins 2016;8(3):84.
Gu MJ, Han SE, Hwang K, Mayer E, Reisinger N, Schatzmayr D, Park BC, Han SH, Yun CH. Hydrolyzed fumonisin B1 induces less inflammatory responses than fumonisin B1 in the co-culture model of porcine intestinal epithelial and immune cells. Toxicol Lett 2019;305:110-116.
Grenier B, Schwartz- Zimmermann, HE, Gruber-Dorninger C, Dohnal I, Aleschko M, Schatzmayr G, Moll WD, Applegate TJ. Enzymatic hydrolysis of fumonisins in the gastrointestinal tract of broiler chickens. Poult Sci 2017;96(12):4342-4351.
Antonissen G, De Baere S, Novak B, Schatzmayr D, Den Hollader D, Devreese M, Croubels S. Toxicokinetics of hydrolyzed fumonisin B1 after single oral or intravenous bolus to broiler chickens fed a control or a fumonisins-contaminated diet. Toxins 2020;12(6):413.
Voss K, Smith G, Haschek W. Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim Feed Sci Technol 2007;137(3-4):299-325.
Desai K, Sullards MC, Allegood J, Wang E, Schmelz EM. Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim Biophys Acta Mol Cell Biol Lipids 2002;1585(2-3):188-192.
Wang GH, Xue CY, Chen F, Ma YL, Zhang XB, Bi YZ, Cao YC. Effects of combinations of ochratoxin A and T-2 toxin on immune function of yellow-feathered broiler chickens. Poult Sci 2009;88(3):504-510.
Futerman AH, Hannun YA. The complex life of simple sphingolipids. EMBO Rep 2004;5(8):777-782.
Wangia-Dixon RN, Nishimwe K. Molecular toxicology and carcinogenesis of fumonisins: A review. J Environ Sci Health Toxicol 2020;39(1):44-67.
Weibking TS, Ledoux DR, Brown TP, Rottinghaus GE. Fumonisin toxicity in turkey poults. J Vet Diagn Invest 1993;5(1):75-83.
Riley RT, Voss KA. Differential sensitivity of rat kidney and liver to fumonisin toxicity: organ-specific differences in toxin accumulation and sphingoid base metabolism. Toxicol Sci 2006;92(1):335-345.
Enongene EN, Sharma RP, Bhandari N, Voss KA, Riley RT. Disruption of sphingolipid metabolism in small intestines, liver and kidney of mice dosed subcutaneously with fumonisin B1. Food Chem Toxicol 2000;38(9):793-799.
Guerre P, Gilleron C, Matard-Mann M, Nyvall-Collén P. Targeted sphingolipid analysis in heart, gizzard, and breast muscle in chickens reveals possible new target organs of fumonisins. Toxins 2022;14(12):828.
Uribe J. Efecto de la fumonisina B1 sobre la respuesta inmune celular y variables productivas en el pollo de engorda. [Tesis Licenciatura]. Estado de México, México. Universidad Nacional Autónoma de México; 2015.
Miazzo R, Peralta MF, Magnoli C, Salvano M, Ferrero S, Chiacchiera SM, et al. Efficacy of sodium bentonite as a detoxifier of broiler feed contaminated with aflatoxin and fumonisin. Poult Sci 2005;84(1):1-8.
Tessari ENC, Oliveira CAFD, Cardoso ALSP, Ledoux DR, Rottinghaus GE. Effects of aflatoxin B1 and fumonisin B1 on body weight, antibody titres and histology of broiler chicks. Br Poult Sci 2006;47(3):357-364.
Broomhead JN, Ledoux DR, Bermudez AJ, Rottinghaus GE. Chronic effects of fumonisin B1 in broilers and turkeys fed dietary treatments to market age. Poult Sci 2002;81(1):56-61.
Javed T, Bunte RM, Dombrink-Kutzman MA, Richard JL, Bennett GA, Côté LM, Buck WB. Comparative pathologic changes in broiler chicks on feed amended with Fusarium proliferatum culture material or purified fumonisin B1 and moniliformin. Mycopathology 2005;159:553-564.
Javed T, Dombrink-Kurtzman MA, Richard JL, Bennett GA, Côté LM, Buck WB. Serohematologic alterations in broiler chicks on feed amended with Fusarium proliferatum culture material or fumonisin B1 and moniliformin. J Vet Diagn Invest 1995;7(4):520-526.
Rauber RH, Oliveira MS, Mallmann AO, Dilkin P, Mallmann CA, Giacomini LZ, Nascimento VP. Effects of fumonisin B1 on selected biological responses and performance of broiler chickens. Pesq Vet Bras 2013;33:1081-1086.
Tardieu D, Travel A, Le Bourhis C, Metayer JP, Mika A, Cleva D, Boissieu C, Guerre P. Fumonisins and zearalenone fed at low levels can persist several days in the liver of turkeys and broiler chickens after exposure to the contaminated diet was stopped. Food Chem Toxicol 2021;148:111968.
Todorova KS, Kril AI, Dimitrov PS, Gardeva EG, Toshkova RA, Tasheva YR, Petrichev MH, Russev RV. Effect of fumonisin B1 on lymphatic organs in broiler chickens-pathomorphology. Bull Vet Inst Pulawy 2011;55:801-805.
Ledoux DR, Brown TP, Weibking TS, Rottinghaus GE. Fumonisin toxicity in broiler chicks. J Vet Diagn Invest 1992;4(3):330-333.
Weibking TS, et al. Effects of feeding Fusarium moniliforme culture material, containing known levels of fumonisin B1, on the young broiler chick. Poult Sci 1993;72(3):456-466.
Robledo-Marenco ML. Rojas-García AE, Medina-Díaz IM, Barrón-Vivanco BS, Romero-Bañuelos CA, Rodríguez-Cervantes CH, Girón-Pérez MI. Micotoxinas en Nayarit, México: Estudio de casos. Rev Bio Cienc 2013;2(1).
Zheng W, Feng N, Wang Y, Noll L, Xu S, Liu X, et al. Effects of zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones: A review. Food Chem Toxicol 2019;126:262-276.
Liu J, Applegate T. Zearalenone (ZEN) in livestock and poultry: Dose, toxicokinetics, toxicity and estrogenicity. Toxins 2020;12(6):377.
Wu K, Ren C, Gong Y, Gao X, Rajput SA, Qi D, Wang S. The insensitive mechanism of poultry to zearalenone: A review. Anim Nutr 2021;7(3):587-594.
Yang S, Zhang H, Sun F, De Ruyck K, Zhang J, Jin Y, et al. Metabolic profile of zearalenone in liver microsomes from different species and its in vivo metabolism in rats and chickens using ultra high-pressure liquid chromatography-quadrupole/time-of-flight mass spectrometry. J Agric Food Chem 2017;65(51):11292-11303.
Osselaere A, Devreese M, Goossens J, Vandenbroucke V, De Baere S, De Backer P, Croubels S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem Toxicol 2013;51:350-355.
Devreese M, Antonissen G, Broekaert N, De Baere S, Vanhaecke L, De Backer P, Croubels S. Comparative toxicokinetics, absolute oral bioavailability, and biotransformation of zearalenone in different poultry species. J Agric Food Chem 2015;63(20):5092-5098.
Guo S, Li C, Liu D, Guo Y. Inflammatory responses to a Clostridium perfringens type a strain and α-toxin in primary intestinal epithelial cells of chicken embryos. Avian Pathol 2015;44(2):81-91.
D’mello J, Placinta C, Macdonald A. Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity. Anim Feed Sci Technol 1999;80(3-4):183-205.
Oswald IP, Marin DE, Bouhet S, Pinton P, Taranu I, Accensi FJFA. Immunotoxicological risk of mycotoxins for domestic animals. Food Addit Contam 2005;22(4):354-360.
Blackwell BA, Edwards OE, Fruchier A, ApSimon JW, Miller JD. NMR structural studies of fumonisin B1 and related compounds from Fusarium moniliforme. In: Jackson, LS, et al, editors. Fumonisins in food. Advances in experimental medicine and biology, Boston, USA: Springer; 1996;392:75-91.
Humpf HU, Voss KA. Effects of thermal food processing on the chemical structure and toxicity of fumonisin mycotoxins. Mol Nutr Food Res 2004;48(4):255-269.
Qu L, Wang L, Ji H, Fang Y, Lei P, Zhang X, Jin L, Sun D, Dong H. Toxic mechanism and biological detoxification of fumonisins. Toxins 2022;14(3):182.
Descargas
Publicado
Cómo citar
-
Resumen625
-
PDF123
-
PDF 71
-
Texto completo25
-
Full text 10
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores/as que publiquen en la Revista Mexicana de Ciencias Pecuarias aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Pecuarias reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.