Dietary level of potato protein concentrate and its effect on cytokine and volatile fatty acid intestinal concentration in weaned piglets
DOI:
https://doi.org/10.22319/rmcp.v16i1.6733Palabras clave:
proteína de papa, citocinas proinflamatorias, fermentación intestinal, desteteResumen
Weaning is a traumatic event for the piglet, since it implies changes that are responsible for gastrointestinal disturbs, a productivity decreases or even death. Bacterial resistance development on account of sub-therapeutic doses of antibiotics inclusion in starter diets has become an important public health matter, banning their inclusion on animal feed. Potato protein concentrate (PPC) has been considered an alternative to regulate intestinal inflammation and gut disorders due to its content of antimicrobial peptides which have beneficial effects on gut homeostasis. This study evaluated the effect of the inclusion level of PPC in an antibiotic free diet on the inflammatory markers concentration as interleukin-12p40 (IL-12p40) and tumor necrosis factor alpha (TNF-a) in ileal tissue and volatile fatty acid (VFA) concentration in colonic digesta. 90 piglets were assigned to three treatments: 1, basal diet (C) (diet without antibiotics nor PPC); 2, basal diet with 6% PPC (PPC 6%) and 3, basal diet with 8% PPC (PPC 8%). At 15 postweaning day, six piglets per treatment were euthanized for sample collection. The PPC 8% group had the highest levels of VFA and the lowest concentration of inflammatory cytokines compared to the C group which had the lowest levels of VFA and the highest concentration of inflammatory markers. The inclusion of PPC on the starter diets of weaned piglets can be an effective alternative to regulate the gut dysbiosis during weaning.
Descargas
Citas
Wijtten PJA, Van Der Meulen J, Verstegen MWA. Intestinal barrier function and absorption in pigs after weaning: A review. Br J Nutr 2011;(105):967-981. DOI: https://doi.org/10.1017/S0007114510005660
Xiong X, Tan B, Song M, Ji P, Kim K, Yin Y, et al. Nutritional intervention for the intestinal development and health of weaned pigs. Front Vet Sci 2019;(6):46. DOI: https://doi.org/10.3389/fvets.2019.00046
Ma T, McAllister TA, Guan LL. A review of the resistome within the digestive tract of livestock. Anim Sci Biotechnol 2021;(12):1–20. DOI: https://doi.org/10.1186/s40104-021-00643-6
Yoo JY, Groer M, Dutra SVO, Sarkar A, McSkimming DI. Gut microbiota and immune system interactions. Microorganisms 2020;(8):1587. DOI: https://doi.org/10.3390/microorganisms8101587
Naugler WE, Karin M. The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 2008;14(3):109-119. DOI: https://doi.org/10.1016/j.molmed.2007.12.007
Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK. Role of cytokines in inflammatory bowel disease. World J Gastroenterol 2008;14(27):4280-4288. DOI: https://doi.org/10.3748/wjg.14.4280
Nicholson J, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science 2012;(336):1262–1267. DOI: https://doi.org/10.1126/science.1223813
Ríos-Covián D, Ruas-Madiedo P, Abelardo M, Gueimonde M, Reyes-Gavilán CGDL, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 2016;(7):185. DOI: https://doi.org/10.3389/fmicb.2016.00185
Schwarz S, Kehrenberg C, Walsh TR. Use of antimicrobial agents in veterinary medicine and food animal production. Int J Antimicrob Agents 2001;(17):431–437. DOI: https://doi.org/10.1016/S0924-8579(01)00297-7
Yeung H, Squire CJ, Yosaatmadja Y, Panjikar S, López G, Molina A, et al. Radiation damage and racemic protein crystallography reveal the unique structure of the GASA/Snakin protein superfamily. Angew Chemie Int Ed 2016;(55):7930–7933. DOI: https://doi.org/10.1002/anie.201602719
Sardi L, Paganelli R, Parisini P, Simioli M, Martelli G. The replacement of fishmeal by plant proteins in piglet production. Ital J Anim Sci 2005;2:(Suppl 4)449-451. DOI: https://doi.org/10.4081/ijas.2005.2s.449
Rahman MRT, Fliss I, Biron E. Insights in the development and uses of alternatives to antibiotic growth promoters in poultry and swine production. Antibiotics 2022;(11):766. DOI: https://doi.org/10.3390/antibiotics11060766
DOF. Diario Oficial de la Federación. Norma Oficial Mexicana NOM-062-ZOO-1999, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. México, DF; 2001.
CIOMS-ICLAS. Council for International Organization of Medical Sciences and The International Council for Laboratory Animal Science. International Guiding Principles for Biomedical Research Involving Animals. https://cioms.ch/publications/product/international-guiding-principles-for-biomedical-research-involving-animals-2/.
Bautista-Marín S, Escobar-García K, Molina-Aguilar C, Mariscal-Landín G, Aguilera-Barreyro A, Díaz-Munoz M, et al. Antibiotic-free diet supplemented with live yeasts decreases inflammatory markers in the ileum of weaned piglets. South Afr J Anim Sci 2020;50(3):353-365. DOI: https://doi.org/10.4314/sajas.v50i3.2
Steel RGD, Torrie JH. Principles and procedures of statistics: A biometrical approach. 3rd ed. New York, USA: McGraw-Hill Book Co.; 1997.
SAS. SAS/ETS User’s Guide (release 9.2). Cary NC, USA:SAS Inst. Inc. 2008.
Fernandez-Jimenez N, Castellanos-Rubio A, Plaza-Izurieta L. Coregulation and modulation of NFκB-related genes in celiac disease: uncovered aspects of gut mucosal inflammation. Hum Mol Genet 2014;23(5):1298-1310. DOI: https://doi.org/10.1093/hmg/ddt520
Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009;1(4):a000034. DOI: https://doi.org/10.1101/cshperspect.a000034
Bhatt D, Ghosh S. Regulation of the NF-κB-mediated transcription of inflammatory genes. Front Immunol 2014;(5):71. DOI: https://doi.org/10.3389/fimmu.2014.00071
Abdi K, Singh NJ, Spooner E, Kessler B, Radaev S, Lantz L, et al. Free IL-12p40 monomer is a polyfunctional adaptor for generating novel IL-12-like heterodimers extracellularly. J Immunol 2014;192(12):6028-6036. DOI: https://doi.org/10.4049/jimmunol.1400159
Zundler S, Neurath MF. Interleukin-12: Functional activities and implications for disease. Cytokine Growth Factor Rev 2015;26(5):559-568. DOI: https://doi.org/10.1016/j.cytogfr.2015.07.003
Wei X, Tsai T, Howe S, Zhao J. Weaning induced gut dysfunction and nutritional interventions in nursery pigs: A partial review. Animals 2021;(11):1279. DOI: https://doi.org/10.3390/ani11051279
Liu Y, Espinosa CD, Abelilla JJ, Casas G, Lagos LV, Lee SA, et al. Non-antibiotic feed additives in diets for pigs: A review. Anim Nutr 2018;4(2):113-125. DOI: https://doi.org/10.1016/j.aninu.2018.01.007
Wu D, Fu L, Wen W, Don W. The dual antimicrobial and immunomodulatory roles of host defense peptides and their applications in animal production. J Animal Sci Biotechnol 2022;(13):141. DOI: https://doi.org/10.1186/s40104-022-00796-y
Sun Y, Shang D. Inhibitory Effects of antimicrobial peptides on lipopolysaccharide-induced inflammation. Mediators Inflamm 2015;(2015):167572. DOI: https://doi.org/10.1155/2015/167572
Tuśnio A, Pastuszewska B, Taciak M, Mieczkowska A, Smulikowska S. Response of growing chicken to potato protein concentrates providing different amounts of solanidine glycoalkaloids and trypsin inhibitor. Arch Geflügelk 2013;77(1):51-58.
Parra-Alarcón EA, Hijuitl-Valeriano TJ, Mariscal-Landín G, Reis de Souza TC. Potato protein concentrate: a possible alternative to the use of antibiotics in diets for weaned piglets. Review. Rev Mex Cienc Pecu 2022;13(2):510-524. DOI: https://doi.org/10.22319/rmcp.v13i2.5980
Sanz Y, Collado MC, Haros M, Dalmau J. Nutricional metabolic functions of the intestinal microbiota and its modulation by diet: probiotics and prebiotics. Acta Pediatr Esp 2006;62(11):520-526.
Suckow AT, Briscoe CP. Key questions for translation of FFA receptors: from pharmacology to medicines. Handb Exp Pharmacol 2017;(236):101-131. DOI: https://doi.org/10.1007/164_2016_45
Williams BA, Verstegen MWA. Tamminga S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr Res Rev 2001;(14): 207-227. DOI: https://doi.org/10.1079/095442201108729213
Anthony T, Rajesh T, Kayalvizhi N, Gunasekaran P. Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Bioresour Technol 2009;(100):872-877. DOI: https://doi.org/10.1016/j.biortech.2008.07.027
Walker WA. Mechanisms of action of probiotics. Clin Infect Dis 2008;(46):87-91. DOI: https://doi.org/10.1086/523335
Liu L, Li Q, Yang Y, Guo A. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Front Vet Sci 2021;(8):736739. DOI: https://doi.org/10.3389/fvets.2021.736739
Bikker P, Dirkzwager A, Fledderus J, Trevisi P, le Huërou-Luron I, Lallès JP, Awati A. Dietary protein and fermentable carbohydrates contents influence growth performance and intestinal characteristics in newly weaned pigs. Livestock Sci 2007;(108):194-197. DOI: https://doi.org/10.1016/j.livsci.2007.01.057
Swanson KS, Grieshop CM, Flickinger EA, Bauer L, Healy HP, Dawson KA, et al. Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs. J Nutr 2002;132(5):980-989. DOI: https://doi.org/10.1093/jn/132.5.980
Gaskins HR. Intestinal bacteria and their influence on swine growth. In: Lewis AJ, Southhern LL editors. Swine nutrition, 2nd ed. Florida, USA: CRC Press; 2000:585-608.
Martins FS, Vieira AT, Elian SDA, Arantes RME, Tiago FCP, Sousa LP, et al. Inhibition of tissue inflammation and bacterial translocation as one of the protective mechanisms of Saccharomyces boulardii against Salmonella infection mice. Microbes Infect 2013;(15): 270-279. DOI: https://doi.org/10.1016/j.micinf.2012.12.007
López- Hernández R, Valdés M, Campillo A, Martínez-García P, Salama H, Bolarin JM, et al. Pro- and anti-inflammatory cytokine gene single-nucleotide polymorphism in inflammatory bowel disease. Int J Immunogene 2015;(42):38-45. DOI: https://doi.org/10.1111/iji.12160
Descargas
Publicado
Cómo citar
-
Resumen86
-
PDF12
-
PDF 6
-
Texto completo5
-
Full text 5
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores/as que publiquen en la Revista Mexicana de Ciencias Pecuarias aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Pecuarias reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.