Effect of hesperidin supplementation on blood profile, antioxidant capacity, intestinal histomorphology and fecal microbial counts in Japanese quails

Autores/as

  • Abdullah Özbilgin Sivas Cumhuriyet University. Veterinary Faculty. Department of Animal Nutrition and Nutritional Disorders, Sivas, Turkey. https://orcid.org/0000-0002-1675-3176
  • Mahmut Niyazi Moğulkoç Sivas Cumhuriyet University. Veterinary Faculty. Department of Veterinary Microbiology, Sivas, Turkey.
  • Füsun Erhan Bayçumendur Sivas Cumhuriyet University. Veterinary Faculty. Department of Veterinary Histology and Embriology, Sivas, Turkey.
  • Nazlı Ercan Sivas Cumhuriyet University. Veterinary Faculty. Department of Veterinary Biochemistry, Sivas, Turkey.

DOI:

https://doi.org/10.22319/rmcp.v14i3.6294

Palabras clave:

Blood, Feces, Flavonoid, Lipid, Tissue

Resumen

This study was conducted to determine the effects of hesperidin, a flavonoid added to quail diets, on blood serum, enzymes in tissues, intestinal histomorphology and fecal microflora. In the study, first treatment [(control) (0g hesperidin/kg feed)], second treatment [(HES1) (1 g hesperidin/kg feed)], third treatment [(HES2) (2 g hesperidin/kg feed)] was added to with the basal diet through 35 d. The study was carried out with 3 main groups, 20 quails with 5 sub-repeats in each group and a total of 300 quails. At the end of the study, blood, liver and thigh muscle tissue and fecal samples were taken. Alanine transaminase (ALT) and lactate dehydrogenase (LDH) decreased in the HES1 group but increased in the HES2 group compared to the control group (P<0.05). Aspartate transaminase (AST) increased in the HES1 group compared to the control group and decreased in the HES2 group (P<0.05). Amylase, on the other hand, showed a regular increase in HES1 and HES2 groups to which hesperidin was added to the control group in hesperidin added groups (P<0.05). The tissue antioxidant GSH, CAT and SOD enzyme parameters showed a significant increase in the hesperidin added groups compared to the control group, and this increase was found to be significant compared to the control group (P<0.05). In intestinal histomorphology, in hesperidin treatment groups increased the height of villus in the cecum tissue; in colon tissue, it was determined that hesperidin added groups increased villus height but decreased crypt depth (P<0.05). Consequently, diets hesperidin with treatments positively is thought to affect the lipid, thigh, liver and serum antioxidant enzyme levels, intestinal histomorphology and fecal microflora in quail.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ikhlas B, Huda N, Noryati I. Chemical composition and physicochemical properties of meatballs prepared from mechanically deboned quail meat using various types of flour. Int J Poult Sci 2011;10:30–37.

Purohit AS, Reed C, Mohan A. Development and evaluation of quail breakfast sausage. LWT 2016;69:447–453.

Goliomytis M, Kartsonas N, Charismiadou MA, Symeon GK, Simitzis PE, Deligeorgis SG. The influence of naringin or hesperidin dietary supplementation on broiler meat quality and oxidative stability. PLoS One 2015;10(10):e0141652.

Cushnie TPT, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 2011;38:99–107.

Cano A, Medina A, Bermej A. Bioactive compounds in different citrus varieties. Discrimination among cultivars. J Food Compos Anal 2008;21(5):377-381.

Cho J. Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch Pharm Res 2006;29:699-706.

Kumar A, Lalitha S, Mishra J. Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations. Indian J Pharmacol 2014;46:309-315.

Martini ND, Katerere DRP, Eloff JN. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol 2004;93:207–212.

Hollman PCH, Katan MB. Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 1999;37:937-942.

Guo X, Li K, Guo A, Li E. Intestinal absorption and distribution of naringin, hesperidin, and their metabolites in mice. J Funct Foods 2020;74:104158.

Özbilgin A, Kara K, Gümüş R, Tekçe E. Fatty acid compositions and quality of egg and performance in laying quails fed diet with hesperidin. Trop Anim Health Prod 2021;53:518.

Özbilgin A, Kara K, Urcar Gelen S. Effect of hesperidin addition to quail diets on fattening performance and quality parameters, microbial load, lipid peroxidation and fatty acid profile of meat. J Anim Feed Sci 2021;30(4):367–378 .

Khedr NF. Protective effect of mirtazapine and hesperidin on cyclophosphamide- induced oxidative damage and infertility in rat ovaries. Exp Biol Med 2015;240(12): 1682–1689.

Roohbakhsh A, Parhiz H, Soltani F, Rezzee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci 2015;1(124):64–74 .

Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res 2015;29(3):323–331.

Purba RAP, Yuangklang C, Paengkoum S, Paengkoum P. Milk fatty acid composition, rumen microbial population and animal performance in response to diets rich in linoleic acid supplemented with Piper betle leaves in Saanen goats. Anim Prod Sci 2020. http://dx.doi.org/10.1071/AN20182.

Purba RAP, Paengkoum S, Yuangklang C, Paengkoum P, Salem AZM, Liang JB. Mammary gene expressions and oxidative indicators in ruminal fluid, blood, milk, and mammary tissue of dairy goats fed a total mixed ration containing piper meal (Piper betle L.). Ital J Anim Sci 2022;21(1):129-141.

National Research Council (NRC). 1994. Nutrient requirements of poultry. 9th Edition, National Academy Press, Washington DC.

Bancroft JD, Gamble M. Theory and practice of histological techniques. 5th ed. Philadelphia PA. Elsevier Limited, 2002.

Kamboh AA, Zhu WY. Individual and combined effects of genistein and hesperidin on immunity and intestinal morphometry in lipopolysacharide-challenged broiler chickens. Poult Sci 2014;93:9:2175–2183. https://doi.org/10.3382/ps.2014-03971.

Jin LZ, Ho YW, Abdullah N, Jalaludin S. Influence of dried Bacillus subtilis and lactobacilli cultures on intestinal microflora and performance in broilers. Asian-Australas J Anim Sci 1996;9:397-404.

Selvaraj P, Pugalendi KV. Efficacy of hesperidin on plasma, heart and liver tissue lipids in rats subjected to isoproterenol-induced cardiotoxicity. Exp Toxicol Pathol 2012;64(5):449-452.

Ohtsuki K, Abe A, Mitsuzumi H, Kondo M, Uemura K, Iwasaki Y, Kondo Y. Glucosyl hesperidin improves serum cholesterol composition and inhibits hypertrophy in vasculature. J Nutr Sci Vitaminol 2003;49(6):447-450.

Lee SJ, Yun YS, Lee IK, Ryoo IJ, Yun BS, Yoo ID. An antioxidant lignan and other constituents from the root bark of Hibiscus syriacus. Planta Med 1999;65:658–660.

Alghazeer R, Elgahmasi S, Elnfati AH, et al. Antioxidant activity and hepatoprotective potential of flavonoids from Arbutus pavarii against CCl4 induced hepatic damage. Biotechnol J Int 2017;21(1):1–12.

Abdel-Kareem AA, El-Sheikh TM. Impact of supplementing diets with propolis on productive performance, egg quality traits and some haematological variables of laying hens. J Anim Physiol Anim Nutr (Berl) 2017;101:441–448.

Galal A, Abd El-Motaal AM, Ahmed AMH, Zaki TG. Productive performance and ımmune response of laying hens as affected by dietary propolis supplementation. Int J Poult Sci 2008;7:272-278.

Jung UJ, Lee MK, Jeong KS, Chol MS The hypoglycemic effects of hesperidin and naringin are partly mediated by hepaticglucose regulating enzymes in C57 BL/KsJ-db/db Mice. J Nutr 2004;134:2499–2503.

Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012;5:9–19.

Martemucci G, Costagliola C, Mariano M, D’andrea L, Napolitano P, D’Alessandro AG. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022;2(2):48-78.

Pingitore A, Pace G, Lima P, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutr 2015;31:916–922.

Griess B, Tom E, Domann F, Teoh-Fitzgerald M. Extracellular superoxide dismutase and its role in cancer. Free Radic Biol Med 2017;112:464–479.

Glorieux C, Calderon PB. Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem 2017;398: 1095–1108.

Knight JA. Review: Free radicals, antioxidants, and the immune system. Ann Clin Lab Sci 2000;30:145–158.

Estruel-Amades S, Massot-Cladera PM, Garcia-Cerdà FJ, Pérez-Cano À, Franch M, Castell M, Camps-Bossacoma M. Protective effect of hesperidin on the oxidative stress induced by an exhausting exercise in intensively trained rats. Nutrients 2019;11(4):783.

Lien TF, Yeh HS, Su WT. Effect of adding extracted hesperetin, naringenin and pectin on egg cholesterol, serum traits and antioxidant activity in laying hens. Arch Anim Nutr 2008;62(1):33-43.

Ting S, Yeh HS, Lien TF. Effects of supplemental levels of hesperetin and naringenin on egg quality, serum traits and antioxidant activity of laying hens. Anim Feed Sci Technol 2011;163:59-66.

Brenes A, Viveros A, Goni I, Centeno C, Sayago-Ayerdy SG, Arija I, Saura-Calixto F. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult Sci 2008;87:307–316.

Goni I, Brenes A, Centeno C, Viveros A, Saura-Calixto F, Rebole A, Arija I, Estevez R. Effect of dietary grape pomace and vitamin E on growth performance, nutrient digestibility, and susceptibility to meat lipid oxidation in chickens. Poult Sci 2007; 86:508–516.

Botsoglou NA, Christaki E, Florou-Paneri P, Giannenas I, Papageorgiou G, Spais AB. The effect of a mixture of herbal essential oils or α-tocopheryl acetate on performance parameters and oxidation of body lipid in broilers. S Afr J Anim Sci 2004;34:52–61.

Simitzis PE, Symeon GK, Charismiadou MA, Ayoutanti AG, Deligeorgis SG. The effects of dietary hesperidin supplementation on broiler performance and chicken meat characteristics. Can J Anim Sci 2011;91:275–282.

Escudero-Lopez B, Calani L, Fernandez-Pachon MS, Ortega A, Brighenti F, Crozier A, Del Rio D. Absorption, metabolism, and excretion of fermented orange juice (poly)phenols in rats. Biofactors 2014;40(3):327–335.

Joshi R, Kulkarni YA, Wairkar S. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update. Life Sci 2018;215;43–56. https://doi. org/10.1016/j.lfs.2018.10.066.

Hanieh H, Gerile C, Narabara K, Gu Z, Abe A, Kondo Y. In vivo immunomodulatory effects of dietary purple sweet potato after immunization in chicken. Anim Sci J 2010;81:116-121

Hassanpour H, Zamani MAK, Yazdani A, Cheraghchi BM. Evaluation of intestinal morphology and nitric oxide metabolites in broiler chickens supplemented by green tea. Comp Clin Path 2010;19:43-47.

Wallace J, Oleszek W, Franz C, Hahn I, Baser KH, Mathe A, Teichmann K. Dietary plant bioactives for poultry health and productivity. Br Poult Sci 2010;51:461-487.

Giannenas I, Tontis D, Tsalie E, Chronis EF, Doukas D, Kyriazakis I. Influence of dietary mushroom Agaricus bisporus on intestinal morphology and microflora composition in broiler chickens. Res Vet Sci 2010;89:78-84.

Awad WA, Ghareeb K, Bohm J. Evaluation of the chicory inulin efficacy on ameliorating the intestinal morphology and modulating the intestinal electrophysiological properties in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2011;95:65-72.

Hu Z, Guo Y. Effects of dietary sodium butyrate supplementation on the intestinal morphological structure, absorptive function and gut flora in chickens. Anim Feed Sci Technol 2007;132:240–249.

Cross DE, McDevitt RM, Hillman K, Acamovic T. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. Br Poult Sci 2007;48:496-506.

Danneskiold-Samsøe NB, Dias de Freitas QBH, Santos R, Bicas JL, Cazarin CBB, Madsen L, et al. Interplay between food and gut microbiota in health and disease. Food Res Int 2019;115:23–31.

Anhê FF, Nachbar RT, Varin TV, Trottier J, Dudonné S, Le Barz M, et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut 2019;68:453–464.

Chávez-Carbajal A, Nirmalkar K, Pérez-Lizaur A, Hernández-Quiroz F, Ramírez-Del-Alto S, García-Mena J, Hernández-Guerrero C. Gut microbiota and predicted metabolic pathways in a sample of Mexican women affected by obesity and obesity plus metabolic syndrome. Int J Mol Sci 2019;20:438.

Etxeberria U, Fernández - Quintela A, Milagro FI, Aguirre L, Martínez JA, Portill MP. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem 2013;61:9517–9533.

Brenes A, Viveros A, Chamorro S, Arija I. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim Feed Sci Technol 2016;211:1–17.

Gordon NC, Png K, Wareham DW. Potent synergy and sustained bactericidal activity of vancomycin-colistin combination versus multidrug-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother 2010;54:5316-5322.

Viveros A, Chamorro S, Pizarro M, Arija I, Centeno C, Brenes A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult Sci 2011;90:566–578.

Dueñas M, Muñoz - González I, Cueva C, Jiménez – Girón A, Sánchez - Patán F, Santos - Buelga C, Bartolomé B. A survey of modulation of gut microbiota by dietary polyphenols. Biomed Res Int 2015;2015:850902.

Zhang YS, Li Y, Wang Y, Sun SY, Qu XJ. Naringin, a natural dietary compound, prevents intestinal tumorigenesis in apc (min/+) mouse model. J Cancer Res Clin Oncol 2015;178(5):1-13. http://dx.doi.org/10.1007/s00432-015-2097-9.

Kırkpınar F, Ünlü KB, Özdemir G. Effects of oregano and garlic essential oils on performance, carcase, organ and blood characteristics and intestinal microflora of broilers. Livest Sci 2011;137:219-225.

Leusink G, Rempel H, Skura B, Berkyto M, White W, Yang Y, et al. Growth performance, meat quality, and gut microflora of broiler chickens fed with cranberry extract. Poult Sci 2010;89(7):1514–1523.

Publicado

10.07.2023

Cómo citar

Özbilgin, A., Moğulkoç, M. N., Bayçumendur, F. E., & Ercan, N. (2023). Effect of hesperidin supplementation on blood profile, antioxidant capacity, intestinal histomorphology and fecal microbial counts in Japanese quails. Revista Mexicana De Ciencias Pecuarias, 14(3), 505–522. https://doi.org/10.22319/rmcp.v14i3.6294
Metrics
Vistas/Descargas
  • Resumen
    643
  • PDF
    288
  • PDF
    297
  • Full text
    367

Número

Sección

Artículos

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.