The effect of hesperidin added to quail diets on blood gas, serum biochemistry and Hsp70 in heat stress

Autores/as

  • Abdullah Özbilgin Sivas Cumhuriyet University Veterinary Faculty, Department of Animal Nutrition and Nutritional Disorders. Sivas, Turkey. https://orcid.org/0000-0002-1675-3176
  • Aykut Özgür Gaziosmanpaşa University. Artova Vocational School. Laboratory and Veterinary Health Program. Tokat, Turkey.
  • Onur Başbuğ Sivas Cumhuriyet University. Department of Veterinary Internal Medicine. Veterinary Medicine Faculty. Sivas, Turkey.

DOI:

https://doi.org/10.22319/rmcp.v14i4.6278

Palabras clave:

Flavonoid, Quail, Thermoneutral, Heat shock protein, Hesperidin

Resumen

The aim of this study was to determine the effects of flavonoid, which is a product of citrus production, on blood parameters and HSP 70 concentration in quails applied at thermoneutral and heat stress. In this study, 160 quails (Coturnix coturnix japonica, male), 6 wk old and 150-200 g live weight, were housed in cages for 1 wk of exercise and 5 wk of trial period. The study design consists of 4 groups of 40 animals and 4 subgroups with 10 animals in each group. Thermoneutral (24 ± 0.1 o C) groups are NC (0 g hesperidin/kg basal feed) and NHES3 (3 g hesperidin /kg basal feed) and heat stress (34 ± 0.1 oC) groups are HC (0 g hesperidin/kg basal feed) and HHES3 (3 g hesperidin /kg basal feed) were randomly generated. In the case of heat stress, pO2, pH, HCO3, Cl concentrations decreased in the HHES3 group compared to the HC group (P<0.05). ALP enzyme concentration showed a significant decrease in the HHES3 group compared to the HC group in the heat stress condition. Heat shock protein (HSP70) protein level increased in blood serum, kidney, liver and thigh tissues in HC group with cellular stress during heat stress; however, HSP70 concentration decreased significantly in the HHES3 group. As a result, positive effects of hesperidin supplementation in the diet were found in both heat stress and thermoneutral conditions.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bartlett JR, Smith MO. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult Sci 2003;82:1580–1588.

Attia YA, Bohmer BM, Roth-Maier DA. Responses of broiler chicks raised under constant relatively high ambient temperature to enzymes, amino acid supplementations, or a high-nutrient diet. Arch fur Geflugelkunde 2006;70:80-91.

Attia YA, Hassan RA, Tag El Din AE, Abou Shehema BM. Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow growing chicks exposed to chronic heat stress. J Anim Physiol Anim Nutr (Berl) 2011;95:744-755.

Attia YA, Hassan SS. Broiler tolerance to heat stress at various dietary protein/energy levels. Eur Poult Sci 2017;81. DOI: 10.1399/eps.2017.171

Şahin K, Sahin N, Önderci M, Yaralioglu S, Kücük O. Protective role of supplemental vitamin E on lipid peroxidation, vitamins E, A and some mineral concentrations of broilers reared under heat stress. Vet Med 2001;46:140-144.

Attia YA, Abd El Hamid AEE, Abedalla AA, Berika MA, Al Harthi MA, Kucuk O, Abou Shehema BM. Laying performance, digestibility and plasma hormones in laying hens exposed to chronic heat stress as affected by betaine, vitamin C, and/or vitamin E supplementation. Springerplus 2016;5(1):1619.

Pardue SL, Thaxton JP, Brake J. Role of ascorbic acid in chicks exposed to high environmental temperature. J Appl Physiol 1985;58:1511-1516.

Siegel HS. Adrenals, stress and the environment. Worlds Poult Sci J 1971;27:327-349.

Siegel HS, Van Kampen M. Energy relationships in growing chickens given daily injections of corticosterone. Br Poult Sci 1984;25:477-485.

Ahmad T, Mushtaq T, Khan MA, Babar ME, Yousaf M, Hasan ZU, Kamran Z. Influence of varying dietary electrolyte balance on broiler performance under tropical summer conditions. J Anim Physiol Anim Nutr (Berl) 2009;93:613-621.

Borges SA, Fischer DA, Silva AV, Majorka A, Hooge DM, Cummings KR. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poult Sci 2004;83:1551-1558.

Olanrewaju HA, Purswell JL, Collier SD, Branton SL. Physiology, endocrinology, and reproduction. Effect of ambient temperature and light intensity on physiological reactions of heavy broiler chickens. Poult Sci 2010;89:2668-2677.

Pawar SS, Basavaraj S, Dhansing LV, Nitin KP, Sahebrao KA, Vitthal NA, Manoj BP, Kumar BS. Assessing and mitigating the impact of heat stress in poultry. Adv Anim Vet 2016;4:332–341.

John M. Functional morphology of the avian respiratory system, the lung-air sac system: efficiency built on complexity. Ostrich 2009;79:117–132.

Bongiovanni GA, Soria EA, Eynard AR. Effects of the plant flavonoids silymarin and quercetin on arsenite induced oxidative stress in CHO-K1 cells. Food Chem Toxicol 2007;45:971–976.

Akbarian A, Michiels J, Golian A, Buyse J, Wang Y, De Smet S. Gene expression of heat shock protein 70 and antioxidant enzymes, oxidative status, and meat oxidative stability of cyclically heat-challenged finishing broilers fed Origanum compactum and Curcuma xanthorrhiza essential oils. Poult Sci 2014;93:1930–1941.

Özgür A, Tutar Y. Heat shock protein 90 inhibition in cancer drug discovery: from chemistry to futural clinical applications. Anticancer Agents Med Chem 2016;16(3):280-290.

Tutar L, Tutar Y. Heat shock proteins; An overview. Curr Pharm Biotechnol 2010;11(2):216-222.

Tutar Y. Hsp70 in oncology. Recent Pat DNA Gene Seq 2011;5(3):214-218.

Li J, Fu X, Cao S, Li J, Xing S, Li D, Dong Y, et al. Membrane-associated androgen receptor (AR) potentiates its transcriptional activities by activating heat shock protein 27 (HSP27). J Biol Chem 2018;293:12719–12729.

Slimen IB, Najar T, Ghram A, Dabbebi H, Mrad MB, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia 2014;30(7):513-523.

Quinteiro-Filho WM, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sakai M, Sa LR, Ferreira AJ, Palermo-Neto J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult Sci 2010;89:1905-1914.

Tankson HD, Vizzier-Thaxton Y, Thaxton J, May J, Cameron J. Stress and nutritional quality of broilers. Poult Sci 2001;80:1384–1389.

Ahmad T, Khalid T, Mushtaq T, Mirza MA, Nadeem A, Babar ME, Ahmad G. Effect of potassium chloride supplementation in drinking water on broiler performance under heat stress conditions. Poult Sci 2008;87:1276-1280.

Syafwan S, Kwakkel RP, Verstegen MWA. Heat stress and feeding strategies in meat type chickens. Worlds Poult Sci J 2011;67:653-674.

Jain DP, Somani RS. Antioxidant potential of hesperidin protects gentamicin induced nephrotoxicity in experimental rats. Austin J Pharmacol Ther 2015;3:1071.

El-Shafey MM, Abd-Ellah GM. Hesperidin improves lipid profile and attenuates oxidative stress in hypercholesterolemic rats. Int J Pharm Sci 2014;4:554-559.

Kamboh AA, Hang SQ, Bakhetgul M, Zhu WY. Effects of genistein and hesperidin on biomarkers of heat stress in broilers under persistent summer stress. Poult Sci 2013;92:2411-2418.

Önderci M, Sahin K, Sahin N, Gürsu MF, Doerge D, Sarkar FH, Kücük O. The effect of genistein supplementation on performance and antioxidant status of Japanese quail under heat stress. Arch Anim Nutr 2004;58:463-471.

Laparra JM, Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 2010;61:219-225.

Kamboh AA, Zhu WY. Effect of increasing levels of bioflavonoids in broiler feed on plasma anti-oxidative potential, lipid metabolites, and fatty acid composition of meat. Poult Sci 2013;92:454-461.

Özbilgin A, Kara K, Gümüş R, Tekçe E. Fatty acid compositions and quality of egg and performance in laying quails fed diet with hesperidin. Trop Anim Health Prod 2021;53:518.

Özbilgin A, Kara K, Urcar GS. Effect of hesperidin addition to quail diets on fattening performance and quality parameters, microbial load, lipid peroxidation and fatty acid profile of meat. J Anim Feed Sci 2021. https://doi.org/10.22358/jafs/143104/2021.

Özbilgin A, Moulko MN, Bayomendur FE, Ercan N. Effect of hesperidin supplementation on blood profile, antioxidant capacity, intestinal histomorphology and fecal microbial counts in Japanese quails. Rev Mex Cienc Pecu 2023;14(3):505-522.

Teeter RG, Belay T. Broiler management during acute heat stress, Anim Feed Sci Technol 1996;58:127–142.

N'dri AL, Mignon-Grasteau S, Sellier N, Beaumont C, Tixier-Boichard M. Interactions between the naked neck gene, sex, and fluctuating ambient temperature on heat tolerance, growth, body composition, meat quality, and sensory analysis of slow growing meat-type broilers. Livest Sci 2007;110:33–45.

NRC. Nutrient Requirements of Poultry. 9th ed. National Academy Press. Washington, DC. USA. 1994.

Shaila S, Angshuman S, Abhijeet K, Samindranath M, Pal JK. Flufenoxuron, an acylurea insect growth regulator, alters development of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) by modulating levels of chitin, soluble protein content, and Hsp70 and p34cdc2 in the larval tissues. Pestic Biochem Physiol 2006;85(2):84-90.

Calder WA, Schmidt-Neilsen K. Temperature regulation and evaporation in the pigeon and road runner. Am J Physiol 1967;213:883–889.

Magda AAG. Some managerial and environmental conditions affecting on productive and physiological characters in quail. [PhD thesis]. Department of Animal Production, Cairo University. 1999.

Mahmoud UT, Abdel-Rahman M, Darwish MHA, Mosaad GM. The effect of heat stress on blood picture of japanese quail. J Adv Vet Anim Res 2013;3:69-76.

Özhan M, Tüzemen N, Yanar M. Büyükbaş hayvan yetiştirme. Atatürk Üniversitesi Ziraat Fakültesi Yayınları. Erzurum No:134. 2001;604.

Haddadin MSY, Abdulrahim MS, Hashlamoun EAR, Robinson KR. The effect of Lactobacillus acidophilus on the production and chemical composition of hen’s eggs. Poult Sci 1996;75:491-494.

Ajakaiye JJ, Perez-Bello A, Mollineda-Trujillo A. Impact of vitamins C and E dietary supplementation on leukocyte profile of layer hens exposed to high ambient temperature and humidity. Acta Vet Brno 2010;79:377-383.

Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3- L1 adipocytes. Diabetes 1998;47:1562-1569.

Kutlu HR, Forbes JM. Changes in growth and blood parameters in heat-stressed broiler chicks in response to dietary ascorbic acid. Livest Prod Sci 1993;36:335-350.

Rashidi AA, Ivari YG, Khatibjoo A, Vakilia R. Effects of dietary fat, vitamin E and zinc on immune response and blood parameters of broiler reared under heat stress. Res J Poult Sci 2010;3(2):32-38.

Mumma JO, Thaxton JP, Vizzier-Thaxton Y, Dodson WL. Physiological stress in laying hens. Poult Sci 2006;85:761–769.

Moeini MM, Bahrami A, Ghazi S, Targhibi MR. The effect of different levels of organic and inorganic chromium supplementation on production performance, carcass traits and some blood parameters of broiler chicken under heat stress condition. Biol Trace Elem Res 2011;144:715-724.

Mehaisen GMK, Desoky AA, Sakr OG, Sallam W, Abbas AO. Propolis alleviates the negative effects of heat stress on egg production, egg quality, physiological and immunological aspects of laying Japanese quail. PloS one 2019;14(4):e0214839.

Mujahid A, Akiba Y, Toyomizu M. Acute heat stress induces oxidative stress and decreases adaptation in young White Leghorn cockerels by down regulation of avian uncoupling protein. Poult Sci 2007;86:364-371.

Tan GY, Yang L, Fu YQ, Feng JH, Zhang MH. Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poult Sci 2010;89:115-122.

Abdelhady DH, Elabasy MA, Atta MS, Ghazy EW, Abuzed TK, El-Moslumany A. Synergistic ameliorative effects of organic chromium and selenium against heat stress in japanese quails: performance, immunological, hematological, Biocheml Antioxidant Studies. AJVS 2017;55(2):113-123.

Al-Mashhadini T, Al-Hayali HL. Biochemical and physiological study of the effect of sesame seeds on quail males exposed to thermal stress. Indian J Public Health Res Dev 2020;11(4):1077-1083.

Al-Zeer AH, El-Hazmi MA, Wars AS, Ansari ZA, Yrkendi MS. Serum enzymes in heat stroke: prognostic implication. Clin Chem 1997;43(7):1182-1187.

Melesse A, Maak S, Schmidt R, von Lengerken G. Effect of long-term heat stress on key enzyme activities and T3 levels in commercial layer hens. Int J Livest Prod 2011;2(7):107-116.

Jaiswal SK, Raza M, Uniyal S, Chaturvedani AK, Sahu V, Dilliwar L. Heat stress and its relation with expression of heat shock proteins in poultry. Int J Environ Sci Technol (Tehran) 2017;6(1):159-166.

Erişir Z, Simsek UG, Özçelik M, Baykalır Y, Mutlu SI, Çiftci M. Effects of dietary grape seed on performance and some metabolic assessments in Japanese quail with different plumage colors exposed to heat stress. Rev Bras Zootec 2018;47:e20170172.

Şahin K. Optimal dietary concentration of vitamin E for alleviating the effect of heat stress on performance, thyroid status, ACTH and some serum metabolite and mineral concentrations in broilers. Czech J Anim Sci 2002;47(4):110-116.

Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, et al. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct 1990;15(6):393-401.

Budagova KR, Zhmaeva SV, Grigorev AN, Goncharova AY, Kabakov AE. Flavonoid dihydroquercetin, unlike quercetin, fails to inhibit expression of heat shock proteins under conditions of cellular stress. Biochem 2003;68:1055–1061.

Kim JA, Lee S, Kim DE, Kim M, Kwon BM, Han DC. Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter. Carcinogenesis 2015;36(6):696-706.

Xu J, Tang S, Song E, Yin B, Bao E. Inhibition of heat shock protein 70 intensifies heat-stressed damage and apoptosis of chicken primary myocardial cells in vitro. Mol Med Rep 2017;15(5).

Publicado

02.10.2023

Cómo citar

Özbilgin, A., Özgür, A., & Başbuğ, O. (2023). The effect of hesperidin added to quail diets on blood gas, serum biochemistry and Hsp70 in heat stress. Revista Mexicana De Ciencias Pecuarias, 14(4), 836–854. https://doi.org/10.22319/rmcp.v14i4.6278
Metrics
Vistas/Descargas
  • Resumen
    1114
  • PDF
    264
  • PDF
    255
  • Full text
    507

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.