Factors affecting the ruminal microbial composition and methods to determine microbial protein yield. Review

Autores/as

  • Ezequias Castillo-Lopez Facultad de Estudios Superiores Cuautitlán, Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cuautitlán, Estado de México. http://orcid.org/0000-0001-5182-4921
  • Maria Guadalupe Domínguez-Ordóñez Departamento de Zootecnia, Universidad Autónoma Chapingo, Texcoco, Estado de México, México.

DOI:

https://doi.org/10.22319/rmcp.v10i1.4547

Palabras clave:

Microbial protein, Metabolizable protein, Marker, Rumen, DNA.

Resumen

Microbial protein synthesized in the rumen is a major contributor of metabolizable protein. Thus, accurate estimation of microbial protein is essential in ruminant nutrition. The objective of this review is to describe the microbial composition, major factors affecting its yield and methods to estimate microbial protein flow to the intestine. The use of novel molecular techniques to elucidate the ruminal microbiome and improve methods for estimating microbial protein are discussed. Bacteria, protozoa, fungi and archaea compose the ruminal microbiome. Main factors affecting microbial protein synthesis are availability of carbohydrates, ruminally degradable protein, dietary fat, and ruminal pH. Major microbial markers used to estimate microbial protein synthesis are total purines, diaminopimelic acid and labeled nitrogen; in addition, DNA through real-time PCR is being tested for the estimation of bacterial, protozoal and yeast protein separately. The main difficulty in the estimation of microbial protein flow is obtaining representative microbial pellets from the rumen, which are used as reference to establish the ratio of marker/nitrogen. Detailed phylogenetic analysis using High-throughput DNA sequencing has recently revealed drastic taxonomic differences between fluid-associated bacteria and bacteria from whole intestinal digesta contents. For example, ruminal fluid contains less Fibrobacteres and Proteobacteria, but more Firmicutes compared to whole intestinal digesta. This demonstrates the need of developing effective bacterial collection procedures for obtaining representative ruminal microbial reference pellets to prevent bias on the estimation of the contribution of microbial protein to the intestinal supply of metabolizable protein.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ezequias Castillo-Lopez, Facultad de Estudios Superiores Cuautitlán, Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cuautitlán, Estado de México.

Profesor Asociado en la Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Medicina Veterinaria y Zootecnia. Estudios de Licenciatura realizado en la Universidad Autónoma Chapingo, México. Estudios de Maestría y Doctorado realizados en la University of Nebraska-Lincoln, USA. Posdoctorado realizado en la University of Saskatchewan, Canadá. Hasta la fecha, 2017, cuento con 13 artículos publicados en revistas internacionales arbitradas pertenecientes en el JCR, 17 resúmenes de congresos internacionales publicados como suplementos de revistas. He fungido como revisor de 3 revistas internacionales: Journal of Dairy Science, Canadian Journal of Animal Science, Frontiers in Microbiology y Revista Mexicana de Ciencias Pecuarias. He tenido el honor de participar como evaluador en el Programa Nacional de Posgrados de Calidad del CONACyT. Hablo Inglés, Francés, Español y Maya. Estoy para servir.

Citas

National Research Council (NRC). Nutrient requirements of dairy cattle. 2000. 7th Rev Ed. Natl Acad Sci (Washington DC).

Lapierre H, Pacheco D, Berthiaume R, Ouellet D, Schwab C, Dubreuil P, et al. What is the true supply of amino acids for a dairy cow? J Dairy Sci 2006;(89)(E Suppl):E1–E14.

Castillo-Lopez E, Ramirez Ramirez HA, Klopfenstein, TJ, Hostetler D, Fernando SC, Kononoff PJ. Ration formulations containing reduced-fat dried distillers grains with solubles and their effect on lactation performance, rumen fermentation, and intestinal flow of microbial nitrogen in Holstein cows. J Dairy Sci 2014;97:1578–1593.

Ipharraguerre IR, Reynal SM, Lineiro M, Broderick GA, Clark JH. A comparison of sampling sites, digesta and microbial markers, and microbial references for assessing the postruminal supply of nutrient in dairy cows. J Dairy Sci 2007;90:1904-1919.

Castillo-Lopez E, Klopfenstein TJ, Fernando SC, Kononoff PJ. In vivo determination of rumen undegradable protein of dried distillers grains with solubles and evaluation of duodenal microbial crude protein flow. J Anim Sci 2013;91:924-934.

Gorka P, Castillo-Lopez E, Joy F, Chibisa GE, McKinnon JJ, Penner GB. Effect of including high-lipid by-product pellets in substitution for barley grain and canola meal in finishing diets for beef cattle on ruminal fermentation and nutrient digestibility. J Anim Sci 2015;93(10):4891-4902.

Sylvester JT, Karnati SKR, Dehority BA, Morrison M, Smith GL, St-Pierre NR, et al. Rumen ciliated protozoa decrease generation time and adjust 18S ribosomal DNA copies to adapt to decreased transfer interval, starvation, and monensin. J Dairy Sci 2009;92:256-269.

Belanche A, De la Fuente G, Yáñez-Ruiz DR, Newbold CJ, Calleja L, Balcells J. Technical note: The persistence of microbial-specific DNA sequences through gastric digestion in lambs and their potential use as microbial markers. J Anim Sci 2011;89:2812-2816.

Castillo-Lopez E, Kononoff PJ, Miner J. Short communication: Detection of yeast DNA in omasal digesta of dairy cows consuming dried distiller’s grains and solubles. J Dairy Sci 2010;93(12):5926-5929.

Martinez ME, Ranilla MJ, Ramos S, Tejido ML, Saro C, Carro MD. Evaluation of procedures for detaching particle-associated microbes from forage and concentrate incubated in rusitec fermenters: Eficiency of recovery and representativeness of microbial isolates. J Anim Sci 2009;87:2064-1634.

Broderick G, Merchen N. Markers for quantifying microbial protein synthesis in the rumen. J Dairy Sci 1992;75:2618-2632.

Krause DO, Nagaraja TG, Wright ADG and Callaway TR. Board-invited review: rumen microbiology: leading the way in microbial ecology. J Anim Sci 2013;91:331-341.

Castillo-Lopez E, Moats J, Aluthge ND, Ramirez Ramirez HA, McAllister TA, Anderson CL, et al. Effect of feeding different flaxseed-based products on the rumen microbial community of dairy cows evaluated by high-throughput DNA sequencing. J Anim Sci 2016;(Suppl 5):94.

Castillo-Lopez E, Ramirez Ramirez HA, Klopfenstein, TJ, Anderson C, Alugthge ND, Fernando SC, Kononoff PJ. Effect of feeding dried distillers grains with solubles on ruminal biohydrogenation, intestinal fatty acid profile, and gut microbial diversity evaluated through DNA pyro-sequencing. J Anim Sci 2014;92:733–743.

Reynal S, Broderick G, Bearzi C. Comparison of four markers for quantifying microbial protein flow from the rumen of lactating dairy cows. J Dairy Sci 2005;88:4065–4082.

White RR, Roman-Garcia Y, Firkins Y, Kononoff P, VandeHaar MJ, Tran H, et al. Evaluation of the national research council (2016) dairy model and derivation of new prediction equations. 2. Rumen degradable and undegradable protein. J Dairy Sci 2016;100:3611-3627.

White RR, Roman-Garcia Y, Firkins J. Meta-analysis of postruminal microbial nitrogen flows in dairy cattle. II. Approaches to and implications of more mechanistic preduction. J Dairy Sci 2016;99:7932-7944.

NASEM. Nutrient requirements of beef cattle. 8th rev. ed. Natl. Acad. of Science, Engineering and Medicine, Washington, D.C. 2016.

Martin S. Nutrient transport by ruminal bacteria: a review. J Anim Sci 1994;72:3019-3031.

Russell J. Rumen microbiology and its role in ruminant nutrition. Ithaca, NY. 2002.

Petri RM, Forster RJ, Yang W, McKinnon JJ, McAllister TA. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. J Appl Microbiol 2012;112(6):1152–62.

Callaway TR, Dowd SE, Edrington TS, Anderson RC, Krueger N, Bauer N, et al. Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J Anim Sci 2010;88:3977-3983.

Danielsson R, Dicksved J, Sun L, Gonda H, Müller B, Schnürer A, et al. Methane production in dairy cows correlates with rumen methanogenic. Front Microbiol 2017;8:226.

Lima FS, Oikonomou G, Lima SF, Bicalho MLS, Ganda EK, de Oliveira FJC, et al. Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows. Appl Environ Microbiol 2015;81:1327–1337.

Kumar S, Indugu N, Vecchiarelli B, Pitta DW. Associative patterns among anaerobic fungi, methanogenic archaea and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front Microbiol 2015;6:781.

Zhou Z, Fang L, Meng Q, Li S, Chai S, Liu S, Schonewille JT. Assessment of ruminal bacterial and archaeal community structure in yak (Bos grunniens). Front Microbiol 2017;8:179.

Morgavi DP, Forano E, Martin C, Newbold CJ. Microbial ecosystem and methanogenesis in ruminants. Animal 2010;4:1024–1036.

Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HP, Adesogan AT, et al. SPECIAL TOPICS-Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci 2013;91:5045-5069.

NRC. Nutrient requirements of beef cattle. 7th Rev Ed. Washington, DC: National Academic Press; 2000.

Hristov A, Broderick G. Synthesis of microbial protein in ruminally cannulated cows fed alfalfa silage, alfalfa hay, or corn silage. J Dairy Sci 1996;79:1627–1637.

Hussein H, Merchen N, Fahey G. Jr. Composition of ruminal bacteria harvested from steers as influenced by dietary forage level and fat supplementation. J Anim Sci 1995;73:2469-2473.

Storm E, Ørskov E. The nutritive value of rumen micro-organisms in ruminants. The apparent digestibility and net utilization of microbial N for growing lambs. B J Nutr 1983;50:471-478.

Dehority B, Orpin C. Development of, and natural fluctuations in, rumen microbial populations. In: Hobson PN editor. The rumen microbial ecosystem. New York: Elsevier Applied Science; 1988:151-173.

Schären M, Kiri K, Riede S, Gardener M, Meyer U, Hummel J, Urich T, Breves G Dänicke S. Alterations in the rumen liquid-, particle- and epithelium-associated microbiota of dairy cows during the transition from a silage- and concentrate-based ration to pasture in spring. Front Microbiol 2017;8:744.

Saier M Jr. Mechanisms and regulation of carbohydrate transport in bacteria. New York, USA: Academic Press; 1985.

Wattiaux M, Reed J. Fractionation of nitrogen isotopes by mixed ruminal bacteria. J Anim Sci 1995;73:257-266.

Fernando SC, Purvis HT, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, Desilva U. Rumen microbial population dynamics during adaptation to a high‐grain diet. Appl Environ Microbiol 2010;76:7482–7490.

Burroughs W, Trenkle AH, Vetter RL. A system of protein evaluation for cattle and sheep involving metabolizable protein (amino acids) and urea fermentation potential of feedstuffs. Vet Med Small Anim Clin 1974;69:713–722.

Stern M, Hoover W. Methods for determining and factors affecting rumen microbial protein synthesis: a Review. J Anim Sci 1979;49:1590-1603.

Kreikemeier K, Harmon D, Brandt RJr, Nagaraja T, Cochran R. Steam-rolled wheat diets for finishing cattle: Effects of dietary roughage and feed intake on finishing steer performance and ruminal metabolism. J Anim Sci 1990;68:2130–2141.

Franzolin R, Dehority B. Effect of prolonged highconcentrate feeding on ruminal protozoa concentrations. J Anim Sci 1996;74:2803–2809.

Volden H. Protein synthesis, escape of dietary protein, intestinal amino acid profile, and Effects of level of feeding and ruminally undegraded protein on ruminal bacterial performance of dairy cows. J Anim Sci 1999;77:1905-1918.

Herrera-Saldana R, Gomez-Alarcon R, Torabi M, Huber J. Influence of synchronizing protein and starch degradation in the rumen on nutrient utilization and microbial protein synthesis. J Dairy Sci 1990;73:142-148.

Zinn RA, Shen Y. An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. J Anim Sci 1998;76(5):1280-9.

May D, Calderon JF, Gonzalez VM, Montano M, Plascencia A, Salinas-Chavira J, Torrentera N, Zinn RA. Influence of ruminal degradable intake protein restriction on characteristics of digestion and growth performance of feedlot cattle during the late finishing phase. J Anim Sci Technol 2014;56:14.

Huws SA, Kim EJ, Cameron SJS, Girdwood SE, Davies L, Tweed J, et al. Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and echium oil. Microbial Biotechnol 2014;8:331-341.

Enjalbert F, Combes S. Zened A, Meynadier A. Rumen microbiota and dietary fat: a mutual shaping. J Appl Microbiol 2017 [Accepted]. doi: 10.1111/jam.13501

Chen G, Russell J. Transport and deamination of amino acids by a gram-positive, monensin-sensitive ruminal bacterium. Appl Environ Microbiol 1990;56:2186.

Thurston B, Dawson K, Strobel H. Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus. Appl Environ Microbiol 1993;59:2631.

Strobel H. Pentose utilization and transport by the ruminal bacterium Prevotella rurninicola. Arch Microbiol 1993;159:465.

Strobel H, Russell J. Succinate transport by a ruminal selenomonad and its regulation by carbohydrate availability and osmotic strength. Appl Environ Microbiol 1991;57:248.

McCann JC, Luan S, Cardoso FC, Derakhshani H, Khafipour E and Loor JJ. Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium. Front Microbiol 2016;7:701.

Clark J, Klusmeyer T, Cameron M. Microbial protein synthesis and flows of nitrogenous fractions to the duodenum of dairy cows. J Dairy Sci 1992;75:2304-2323.

Hristov A, Ivan M, Rode L, McAllister T. Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium- or high-concentrate barley-based diets. J Anim Sci 2001;79:515-524.

Huhtanen P, Brotz G, Satter L. Omasal sampling technique for assessing fermentative digestion in the forestomach of dairy cows. J Anim Sci 1997;75:1380–1392.

Taylor CC, Allen MS. Corn grain endosperm type and brown midrib 3 corn silage: site of digestion and ruminal digestion kinetics in lactating cows. J Dairy Sci 2005;88:1413–1424.

Owens FN, Hanson CF. External and internal markers for appraising site and extent of digestion in ruminants. J Dairy Sci 1992;75:2605–2617.

Titgemeyer EC. Design and interpretation of nutrient digestion studies. J Anim Sci 1997;75:2235–2247.

Kelzer JM, Kononoff PJ, Gehman MA, Tedeschi LO, Karges K, Gibson ML. Effects of feeding three types of corn-milling coproducts on milk production and ruminal fermentation of lactating Holstein cattle. J Dairy Sci 2009;92:5120–5132.

Ramirez RHA, Nestor K, Tedeschi LO, Callaway TR, Dowd SE, Fernando SC, Kononoff PJ. The effect of brown midrib corn silage and dried distillers’ grains with solubles on milk production, nitrogen utilization and microbial community structure in dairy cows. Can J Anim Sci 2012;92:365-380.

May ML, DeClerck JC, Quinn MJ, DiLorenzo N, Leibovich J, Smith DR, Hales KE, Galyean ML. Corn or sorghum wet distillers grains with solubles in combination with steam-flaked corn: Feedlot cattle performance, carcass characteristics, and apparent total tract digestibility. J Anim Sci 2010;88:2433-2443.

Dehority B. Methodology for measuring microbial growth in the rumen. Proc Int Symp Nutr Requirem Ruminants. Universidad Federal de Vicosa, Vicosa-MG-Brazil. 1995;121–137.

Zinn R, Owens F. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can J Anim Sci 1986;66:157-166.

Obispo N, Dehority B. Feasibility of using total purines as a marker for ruminal bacteria. J Anim Sci 1999;77:3084-3095.

Orskov ER. Starch digestion and utilization in ruminants. J Anim Sci 1986;63:624-1633.

Calsamiglia S, Stern M. Firkins J. Comparison of nitrogen-15 and purines as microbial markers in continuous culture. J Anim Sci 1996;74:1375–1381.

Hristov AN, McAllister TA, Ouellet DR, Broderick GA. Comparison of purines and nitrogen-15 as microbial flow markers in beef heifers fed barley- or corn-based diets. Can J Anim Sci 2005;85:211-222.

Csapo J, Albert C, Pohn G, Csapo Z. Rapid method for the determination of diaminopimelic acid using ion exchange chromatography. Acta Univ Sapientiae Alimentaria 2008;1:99-108.

Arambel M, Bartley E, Dufva G, Nagaraja T, Dayton A. Effect of diet on amino and nucleic acids of rumen bacteria and protozoa. J Dairy Sci 1982;65:2095-2101.

Van B, Sargeant M, Gnad D, DeBey B, Lechtenberg K, Nagaraja T. Effect of forage or grain diets with or without monensin on ruminal persistence and fecal Escherichia coli O157:H7 in cattle. Appl Environ Microbiol 2004;70(9):5336–5342.

Vicente F, Guada A, Surra J, Balcells J, Castrillo, C. Microbial contribution to duodenal purine flow in fattening cattle given concentrate diets, estimated by purine N labelling (15N) of different microbial fractions. J Anim Sci 2004;78:159–167.

Kubista M, Andrade J, Bengtsson M, Forootan A, Jonak J, Lind K, et al. The real-time polymerase chain reaction. Molec Asp Med 2006;27:95–125.

Yu Y, Lee C, Kim K, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioengin 2005;89:670-679.

Castillo-Lopez E, Klopfenstein TJ, Fernando SC, Kononoff PJ. Effect of dried distillers’ grains and solubles when replacing corn or soybean meal on rumen microbial growth in vitro as measured using DNA as a microbial marker. Can J Anim Sci 2014;94(2):349-356.

Sylvester JT, Karnati SKR, Yu Z, Newbold CJ, Firkins JL. Evaluation of a real-time PCR assay quantifying the ruminal pool size and duodenal flow of protozoal nitrogen. J Dairy Sci 2005;88:2083–2095.

Klopfenstein TJ, Erickson GE, Bremer VR. Board-invited review: Use of distillers by-products in the beef cattle feeding industry. J Anim Sci 2008;86:1223-1231.

Vetrovsky T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PloSONE 2013;8(2):e57923.

Castillo-Lopez E, Moats J, Aluthge ND, Ramirez RHA, Christensen D, Mutsvangwa T, et al. Effect of partially replacing a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows. J Appl Microbiol 2017;124:42-57.

Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PloS ONE 2014;9(1), e85423.

Castillo-Lopez E, Jenkins CJR, Aluthge ND, Westom T, Fernando SC, Kononoff PJ. The effects of regular or low-fat distillers grains and solubles on rumen methanogenesis and the rumen bacterial community. J Appl Microbiol 2017;123:1381-1395.

Rodríguez CA, González, J, Alvir MR, Repetto JL, Centeno C, Lamrani F. Composition of bacteria harvested from the liquid and solid fractions of the rumen of sheep as influenced by feed intake. Br J Nutr 2000;84(3):369-376.

González J, Arroyo JM, Ouarti M, Guevara-González J, Rodríguez CA, Alvir MR, et al. Composition of free and adherent ruminal bacteria: inaccuracy of the microbial nutrient supply estimates obtained using free bacteria as reference samples and (15)N as the marker. Animal 2012;6(3):468-75.

Sylvester JT, Karnati SKR, Yu Z, Newbold CJ, Firkins JL. Evaluation of a real-time PCR assay quantifying the ruminal pool size and duodenal flow of protozoal nitrogen. J Dairy Sci 2005;88:2083-2095.

Hristov AN. Comparative characterization of reticular and duodenal digesta and possibilities of estimating microbial outflow from the rumen based on reticular sampling in dairy cows. J Dairy Sci 2007;85:2606-2613.

Cooper RJ, Milton CT, Klopfenstein TJ, Scott TL, Wilson CB, Mass RA. Effect of corn processing on starch digestion and bacterial crude protein flow in finishing cattle. J Anim Sci 2002;80:797–804.

Glenn BP, Varga GA, Huntington GB, Waldo DR. Duodenal nutrient flow and digestibility in Holstein steers fed formaldehyde- and formic acid-treated alfalfa or orchardgrass silage at two intakes. J Anim Sci 1989;67:513-528.

Leupp JL, Lardy GP, Karges KK, Gibson ML, Caton JS. Effects of increasing level of corn distillers dried grains with solubles on intake, digestion, and ruminal fermentation in steers fed seventy percent concentrate diets. J Anim Sci 2009;87:2906-2912.

Moorby JM, Dewhurst RJ, Evans RT, Danelon JL. Effects of dairy cow diet forage proportion on duodenal nutrient supply and urinary purine derivative excretion. J Dairy Sci 2006;89:3552–3562.

Ipharraguerre IR, Shabi Z, Clark JH, Freeman DE. Ruminal fermentation and nutrient digestion by dairy cows fed varying amounts of soyhulls as a replacement for corn grain. J Dairy Sci 2002;85:2890–2904.

Schwab EC, Schwab CG, Shaver RD, Girard CL, Putnam DE, Whitehouse NL. Dietary forage and nonfiber carbohydrate contents influence B-vitamin intake, duodenal flow, and apparent ruminal synthesis in lactating dairy cows. J Dairy Sci 2006;89:174–187.

Publicado

08.01.2019

Cómo citar

Castillo-Lopez, E., & Domínguez-Ordóñez, M. G. (2019). Factors affecting the ruminal microbial composition and methods to determine microbial protein yield. Review. Revista Mexicana De Ciencias Pecuarias, 10(1), 120–148. https://doi.org/10.22319/rmcp.v10i1.4547
Metrics
Vistas/Descargas
  • Resumen
    3977
  • PDF
    825
  • PDF
    896
  • Texto Completo
    2472

Número

Sección

Revisiones bibliográficas

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a