Origen metabólico y propiedades bioactivas de ácidos grasos ramificados e impares en leche de rumiantes. Revisión

Autores/as

  • Pilar Gómez-Cortés Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, España.
  • Miguel Ángel de la Fuente Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, España.

DOI:

https://doi.org/10.22319/rmcp.v11i4.5171

Palabras clave:

Rumiante, Ácidos grasos, Leche, Productos lácteos, Rumen, Lípidos

Resumen

Los ácidos grasos de cadena impar y ramificada (AGCIR) son un grupo de lípidos en la leche que no supera el 5 % de los ácidos grasos (AG) totales, y que agrupa a un conjunto de moléculas entre las cuales los isómeros de los AG pentadecanoico (15:0, iso 15:0 y anteiso 15:0), hexadecanoico (iso 16:0) y heptadecanoico (17:0, iso 17:0 y anteiso 17:0) son los más abundantes. Los AGCIR son sintetizados por microorganismos ruminales a partir de moléculas producidas durante los procesos de la fermentación de alimentos. Investigaciones recientes señalan la posibilidad de síntesis endógena de algunos AG de cadena impar (15:0 y 17:0) y ramificada (iso 17:0 y anteiso 17:0). La presencia de estos AG en la leche está influenciada por factores dietéticos, principalmente con la proporción de almidón vs fibra, la relación forraje/concentrado y la suplementación con fuentes de grasa que generan cambios en el metabolismo lipídico, que inducen modificaciones en el perfil de AGCIR de la leche. La leche y los productos lácteos son la principal y casi única fuente de AGCIR de la dieta humana. A pesar de su baja concentración, los AGCIR representan propiedades bioactivas que han sido puestas de manifiesto en distintas investigaciones. Este trabajo revisa el origen metabólico, las propiedades bioactivas, así como las más recientes estrategias alimenticias dirigidas para manipular los contenidos y perfiles de AGCIR en la grasa láctea.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Schroeder M, Vetter W. Detection of 430 Fatty acid methyl esters from transesterified butter sample. J Am Oil Chem Soc 2013;90:771-790.

Vlaeminck B, Fievez V, van Laar H, Vlaeminck B, Fievez V, Cabrita ARJ, Fonseca AJM et al. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim Feed Sci Technol 2006;131:389-417.

Buccioni A, Decandia M, Minieri S, Molle G, Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim Feed Sci Technol 2012;174:1-25.

Or-Rashid MM, Odongo NE, McBride BW. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid vaccenic acid, and odd-chain and branched-chain fatty acids. J Animal Sci 2007;85:1228–1234.

Bas P, Archimède H, Rouzeau A, Sauvant, D. Fatty acid composition of mixed-rumen bacteria: effect of concentration and type of forage. J Dairy Sci 2003;86:2940-2948.

Baumann E, Chouinard PY, Lebeuf Y, Rico DE, Gervais R. Effect of lipid supplementation on milk odd- and branched-chain fatty acids in dairy cows. J Dairy Sci 2016;99:6311-6323.

Fievez V, Colman E, Castro-Montoya JM, Stefanov I, Vlaeminck B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function-An update. Anim Feed Sci Technol 2012;172:51-65.

Bessa RJB, Maia, MRG, Jerónimo E, Belo AT, Cabrita ARJ, Dewhurst RJ, Fonseca AJM. Using microbial fatty acids to improve understanding of the contribution of solid associated bacteria to microbial mass in the rumen. Anim Feed Sci Technol 2009;150:197–206.

Keeney M, Katz I, Allison J. On the probable origin of milk fat acids in rumen microbial lipids. J Am Oil Chem Soc 1962;39:198–201.

Dewhurst RJ, Moorby JM, Vlaeminck B, Van Nespen T, Fievez V. Apparent recovery of duodenal odd- and branched-chain fatty acids in milk. J Dairy Sci 2007;90:1775–1780.

Schmidely P, Glasser F, Doreau M, Sauvant D. Digestion of fatty acids in ruminants: a meta-analysis of flows and variation factors. 1. Total fatty acids. Animal 2008;2:677–690.

Palmquist DL. Milk fat: Origin of fatty acids and influence of nutritional factors thereon. In: Fox PF, McSweeney PLH editors. Advanced dairy chemistry, vol 2, Lipids, 3rd ed. New York, USA: Springer; 2006:43-92.

Massart-Leën AM, Roets E, Peeters G, Verbeke R. Propionate for fatty acid synthesis by the mammary gland of the lactating goat. J Dairy Sci 1983;66:1445-1454.

French EA, Bertics SJ, Armentano, LE. Rumen and milk odd-and branched-chain fatty acid proportions are minimally influenced by ruminal volatile fatty acid infusions. J Dairy Sci 2012;95:2015-2026.

Vlaeminck B, Gervais R, Rahman MM, Gadeyne F, Gorniak, M, Doreau M et al. Postruminal synthesis modifies the odd- and branched chain fatty acid profile from the duodenum to milk. J Dairy Sci 2015;98:4829-4840.

Fievez V, Vlaeminck B, Dhanoa MS, Dewhurst RJ. Use of principal component analysis to investigate the origin of heptadecenoic and conjugated linoleic acids in milk. J Dairy Sci 2003;86:4047–4053.

Gervais R, Vlaeminck B, Fanchone A, Nozière P, Doreau M, Fievez V. Odd-and branched-chain fatty acids duodenal flows and milk yields in response to N underfeeding and energy source in dairy cows. J Dairy Sci 2011;94(Suppl 1):125–126.

Xu HF, Luo J, Zhao WS, Yang YC, Tian HB, Shi HB et al. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells. J Dairy Sci 2016;99:783-795.

Shi HB, Wu M, Zhu JJ, Zhang CH, Yao, DW, Luo J et al. Fatty acid elongase 6 plays a role in the synthesis of long-chain fatty acids in goat mammary epithelial cells. J Dairy Sci 2017;100:4987-4995.

Enjalbert F, Combes S, Zened A, Meynadier A. Rumen microbiota and dietary fat: a mutual shaping. J Appl Microbiol 2017;123:782-797.

Vlaeminck B, Dewhurst RJ, Demeyer D, Fievez V. Odd and branched chain fatty acids to estimate proportions of cellulolytic and amylolytic particle associated bacteria. J Anim Feed Sci 2004;13:235–238.

Cabrita ARJ, Vale JMP, Bessa RJB, Dewhurst RJ, Fonseca AJM. Effects of dietary starch source and buffers on milk responses and rumen fatty acid biohydrogenation in dairy cows fed maize silage-based diets. Anim Feed Sci Technol 2009;52:267–277.

Sun YZ, Mao SY, Zhu WY. Rumen chemical and bacterial changes during stepwise adaptation to a high-concentrate diet in goats. Animal 2010;4:210–217.

Patel M, Wredle E, Bertilsson J. Effect of dietary proportion of grass silage on milk fat with emphasis on odd- and branched-chain fatty acids in dairy cows. J Dairy Sci 2013;96:390-397.

Li F, Li Z, Li S, Ferguson JD, Cao Y, Yao J et al. Effect of dietary physically effective fiber on ruminal fermentation and the fatty acid profile of milk in dairy goats. J Dairy Sci 2014;97:2281-2290.

Li F, Yang XJ, Cao YC, Li SX, Yao JH, Li ZJ et al. Effects of dietary effective fiber to rumen degradable starch ratios on the risk of sub-acute ruminal acidosis and rumen content fatty acids composition in dairy goat. Anim Feed Sci Technol 2014;189:54–62.

Cívico A, Núñez Sánchez N, Gómez-Cortés P, De la Fuente MA, Peña Blanco F, Juárez M et al. Odd- and branched-chain fatty acids in goat milk as indicators of diet composition. Ital J Anim Sci 2017;16:68-74.

Vlaeminck B, Fievez V, Demeyer D, Dewhurst RJ. Effect of forage:concentrate ratio on fatty acid composition of rumen bacteria isolated from ruminal and duodenal digesta. J Dairy Sci 2006;89:2668-2678.

Zhang Y, Liu K, Hao X, Xin H. The relationships between odd- and branched-chain fatty acids to ruminal fermentation parameters and bacterial populations with different dietary ratios of forage and concentrate. J Anim Physiol Anim Nutr 2017;101:1103–1114.

Vazirigohar M, Dehghan-Banadaky M, Rezayazdi K, Nejati-Javaremi A, Mirzaei-Alamouti H, Patra AK. Effects of diets containing supplemental fats on ruminal fermentation and milk odd- and branched-chain fatty acids in dairy cows. J Dairy Sci 2018;101:6133-6141.

Gómez-Cortés P, Toral PG, Frutos P, Juárez M, De la Fuente MA, Hervás, G. Effect of the supplementation of dairy sheep diet with incremental amounts of sunflower oil on animal performance and milk fatty acid profile. Food Chem 2011;125:644-651.

Martínez-Marín AL, Gómez-Cortés P, Gómez CG, Juárez M, Pérez AL, Pérez HM et al. Animal performance and milk fatty acid profile of dairy goats fed diets added differently unsaturated plant oils on fatty acid profile of goat milk. J Dairy Sci 2011;94:5359-5368.

Maia MRG, Chaudhary LC, Figueres L, Wallace RJ. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek 2007;91:303-314.

Yang SL, Bu DP, Wang JQ, Hu ZY, Li D, Wei HY, et al. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal 2009;3:1562–1569.

Ran-Ressler RR, Devapatla S, Lawrence P, Brenna JT. Branched chain fatty acids are constituents of the normal healthy newborn gastrointestinal tract. Pediatr Res 2008;64:605-609.

Wang DH, Ran-Ressler R, St Leger J, Nilson E, Palmer L, Collins R et al. Sea lions develop human-like vernix caseosa delivering branched fats and squalene to the GI tract. Sci Rep 2018;8:7478.

Kaneda T. Fatty acids of the genus bacillus: An example of branched-chain preference. Bacteriol Rev 1977;41:391.

Ran-Ressler RR, Khailova L, Arganbright KM, Adkins-Rieck CK, Jouni ZE, Koren O et al. Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PLoS One 2011;6:e29032.

Inoue T, Shingaki R, Fukui K. Inhibition of swarming motility of Pseudomonas aeruginosa by branched-chain fatty acids. FEMS Microbiol Lett 2008;281:81-86.

Yan Y, Wang Z, Greenwald J, Kothapalli KSD, Park HG, Liu R et al. BCFA suppresses LPS induced IL-8 mRNA expression in human intestinal epithelial cells. Prostaglandins Leukot Essent Fatty Acids 2017;116:27-31.

Yan Y, Wang Z, Wang D, Lawrence P, Wang X, Kothapalli KSD et al. BCFA-enriched vernix-monoacylglycerol reduces LPS-induced inflammatory markers in human enterocytes in vitro. Pediatr Res 2018;83:874-879.

Liu L, Wang Z, Park HG, Xu C, Lawrence P, Sub X et al. Human fetal intestinal epithelial cells metabolize and incorporate branched chain fatty acids in a structure specific manner. Prostaglandins Leukotr Essent Fatty Acids 2017;116:32-39.

Ran-Ressler RR, Bae S, Lawrence P, Wang DH, Brenna JT. Branched chain fatty acid content of foods and estimated intake in the USA. Br J Nutr 2014;112:565-572.

Yang Z, Liu S, Chen X, Chen H, Huang M, Zheng J. Induction of apoptotic cell death and in vivo growth inhibition of human cancer cells by a saturated branched-chain fatty acid, 13-methyltetradecanoic acid. Cancer Res 2000;60:505-509.

Cai Q, Huang H, Qian D, Chen K, Luo J, Tian Y et al. 13- methyltetradecanoic acid exhibits antitumor activity on T-cell lymphomas in vitro and in vivo by down-regulating p-AKT and activating caspase-3. PLoS One 2013;8:e65308.

Wongtangtintharn S, Oku H, Iwasaki H, Toda T. Effect of branched-chain fatty acids on fatty acid biosynthesis of human breast cancer cells. J Nutr Sci Vitaminol 2004;50:137-143.

Wongtangtintharn S, Oku H, Iwasaki H, Inafuku M, Toda T, Yanagita T. Incorporation of branched-chain fatty acid into cellular lipids and caspase in dependent apoptosis in human breast cancer cell line, SKBR-3. Lipids Health Dis 2005;4:29.

Mika A, Stepnowski P, Kaska L, Proczko M, Wisniewski P, Sledzinski M et al. A Comprehensive study of serum odd- and branched-chain fatty acids in patients with excess weight. Obesity 2016;24:1669-1676.

Jenkins B, West JA, Koulman A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. Molecules 2015;20:2425-2444.

Jenkins BJ, Seyssel K, Chiu S, Pan PH, Lin SY, Stanley E et al. Odd chain fatty acids; New insights of the relationship between the gut microbiota, dietary intake, biosynthesis and glucose intolerance. Sci Rep 2017;7:44845.

Yakoob MY, Shi PL, Willett WC, Rexrode KM, Campos H, Orav EJ et al. Circulating biomarkers of dairy fat and risk of incident diabetes mellitus among men and women in the United States in two large prospective cohorts. Circulation 2016;133:1645-1654.

Pfeuffer M, Jaudszus A. Pentadecanoic and heptadecanoic acids: multifaceted odd-chain fatty acids. Adv Nutr 2016;7:730-734.

Risérus U, Marklund M. Milk fat biomarkers and cardiometabolic disease. Curr Opin Lipidol 2017;28:46-51.

Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kroger J, Schulze MB et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol 2014;2:810-818.

Khaw KT, Friesen MD, Riboli E, Luben R, Wareham N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: The EPIC-Norfolk prospective study. PLoS Med 2012;9:e1001255.

Otto MCD, Nettleton JA, Lemaitre RN, Steffen LM, Kromhout D, Rich SS et al. Biomarkers of dairy fatty acids and risk of cardiovascular disease in the multi-ethnic etudy of atherosclerosis. J Am Heart Assoc 2013;2:e000092.

Liang J, Zhou Q, Amakye WK, Su Y, Zhang Z. Biomarkers of dairy fat intake and risk of cardiovascular disease: A systematic review and meta analysis of prospective studies. Crit Rev Food Sci Nutr 2018;58:1122-1130.

O’Donnell-Megaro AM, Barbano DM, Bauman DE. Survey of the fatty acid composition of retail milk in the United States including regional and seasonal variations. J Dairy Sci 2011;94:59–65.

Shingfield KJ, Chilliard Y, Toivonen P, Kairenius P, Givens DI. Trans fatty acids and bioactive lipids in ruminant milk. Adv Exp Med Biol 2008;606:3-65.

Shingfield KJ, Reynolds CK, Lupoli B, Toivonen V, Yurawecz MP, Delmonte P et al. Effect of forage type and proportion of concentrate in the diet on milk fatty acid composition in cows given sunflower oil and fish oil. Anim Sci 2005;80:225–238.

Publicado

18.12.2020

Cómo citar

Gómez-Cortés, P., & de la Fuente, M. Ángel. (2020). Origen metabólico y propiedades bioactivas de ácidos grasos ramificados e impares en leche de rumiantes. Revisión. Revista Mexicana De Ciencias Pecuarias, 11(4), 1174–1191. https://doi.org/10.22319/rmcp.v11i4.5171
Metrics
Vistas/Descargas
  • Resumen
    1029
  • PDF
    953
  • PDF
    238
  • Texto completo
    84

Número

Sección

Revisiones bibliográficas

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.