Generación de nuevas ecuaciones para estimar la biomasa aérea a partir de variables morfológicas obtenidas de pastos en agostaderos de Nuevo León, México

Autores/as

DOI:

https://doi.org/10.22319/rmcp.v15i1.6457

Palabras clave:

ecuaciones alométricas, Cenchrus ciliaris, pastos nativos, diametro comprimido

Resumen

La estimación de biomasa aérea de pastos contribuye a realizar un manejo eficiente y sostenible de los agostaderos. El objetivo del presente estudio fue generar nuevas ecuaciones para estimar la biomasa aérea de pastos presentes en agostaderos, en Nuevo León, México, basado en datos colectados del total (n=745) de los individuos de las cinco especies de pastos: Cenchrus ciliaris Linnaeus, Pappophorum bicolor Fourn, Aristida purpurea Nutt, Tridens texanus Watson y Paspalum pubiflorum Fourn presentes en las parcelas de muestreo. Utilizando la altura máxima y la de los tallos vegetativos, los diámetros aéreo, basal y comprimido, y volúmenes medidos en cada uno de los individuos colectados, se generaron ecuaciones lineales (stepwise) y no lineales, para estimar la biomasa aérea (base materia seca) de los pastos cortados a ras de suelo. Se seleccionaron seis ecuaciones generales con el mejor ajuste estadístico para el total de las especies colectadas. La ecuación general III tuvo los mejores valores de R2=0.88 y AIC=3079, utilizando las cinco variables evaluadas. La ecuación general IV estimó con R2=0.86 y AIC= 3530, utilizando solo la variable de diámetro comprimido. Las ecuaciones específicas seleccionadas estimaron la biomasa aérea de los pastos Cenchrus ciliaris (R2=0.88, r=0.94), Pappophorum bicolor (R2=0.86, r=0.92), Aristida purpurea (R2=0.92, r=0.96), Tridens texanus (R2=0.91, r=0.96), y Paspalum pubiflorum (R2=0.93, r=0.97). Las nuevas ecuaciones son una alternativa confiable para estimar indirectamente la biomasa aérea de los pastos de los agostaderos del noreste de México, de forma más rápida y menos costosa que el método tradicional.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ILRI. (International Livestock Research Institute), IUCN. (International Union for Conservation of Nature), FAO. (Food and Agriculture Organization of the United Nations), WWF. (World Wide Fund for Nature), UNEP. (United Nations Environment Programme) & ILC. (International Land Coalition). Rangelands Atlas. Nairobi Kenya: ILRI. 2021 https://hdl.handle.net/10568/114064. Accessed Apr 1, 2023.

Jones MO, Robinson NP, Naugle DE, Maestas JD, Reeves MC, et al. Annual and 16-day rangeland production estimates for the western United States. Rangeland Ecol Management 2021;(77):112-117.

Mganga KZ, Musimba NKR, Nyariki DM, Nyangito MM, Mwang'ombe AW. The choice of grass species to combat desertification in semi‐arid Kenyan rangelands is greatly influenced by their forage value for livestock. Grass Forage Sci 2015;70(1):161-167.

Williams DG, Baruc Z. African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biolog Invasions 2000;(2):123-140.

Murphy DJ, Shine P, Brien BO, Donovan MO, Murphy MD. Utilising grassland management and climate data for more accurate prediction of herbage mass using the rising plate meter. Precision Agric 2021;(22):1189-1216.

Mundava C, Helmholz P, Schut T, Corner R, McAtee B, Lamb D. Evaluation of vegetation indices for rangeland biomass estimation in the Kimberley area of Western Australia. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2014;(II-7):47-53.

Grüner E, Astor T, Wachendorf M. Biomass prediction of heterogeneous temperate grasslands using an SfM approach based on UAV imaging. Agronomy 2019;9(2):54.

Murphy DJ, Murphy MD, O’Brien B, O’Donovan MA. Review of precision technologies for optimising pasture measurement on irish grassland. Agriculture 2021;(11):600. https://doi.org/10.3390/agriculture11070600.

Nafus AM, McClaran MP, Archer SR, Throop HL. Multispecies allometric models predict grass biomass in semidesert rangeland. Rangeland Ecol Management 2009;62(1):68-72.

Fernández HH. Estimación de la disponibilidad de pasto. Cuadernillo clásico de forrajeras INTA, SAGPYA, Argentina. 2004;(98):9-12.

Tackenberg O. A new method for non-destructive measurement of biomass, growth rates, vertical biomass distribution and dry matter content based on digital image analysis. Ann Botany 2007;99(4):777-783.

Butterfield HS, Malmström CM. The effects of phenology on indirect measures of aboveground biomass in annual grasses. Int J Remote Sensing 2009;30(12):3133-3146.

Andariese SW, Covington WW. Biomass estimation for four common grass species in northern Arizona ponderosa pine. Rangeland Ecology Management/J Range Management Archives 1986;39(5):472-473.

Harmoney KR, Moore KJ, George JR, Brummer EC, Russell JR. Determination of pasture biomass using four indirect methods. Agronomy J 1997;89(4):665-672.

Damiran D, DelCurto T, Darambazar E, Clark AA, Kennedy PL, Taylor R. Visual obstruction: weight technique for estimating production on northwestern bunchgrass prairie rangelands. In: Proc Western Sec, Am Soc Anim Sci 2007;(58):225-228.

Chen Y, Guerschman J, Shendryk Y, Henry D, Harrison MT. Estimating pasture biomass using sentinel-2 imagery and machine learning. Remote Sens 2021;(13):603.

Xu K, Su Y, Liu J, Hu T, Jin S, et al. Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecological Indicators 2020;(108):105747.

Viljanen N, Honkavaara E, Näsi R, Hakala T, Niemeläinen O, Kaivosoja J. A novel machine learning method for estimating biomass of grass swards using a photogrammetric canopy height model, images and vegetation indices captured by a drone. Agriculture 2018;(8):70.

Marroquín-Castillo JJ, Alanís-Rodríguez E, Jiménez-Peréz J, Aguirre-Calderón O, Mata-Balderas JM, Chavez-Costa AC. Composición florística y diversidad de un área restaurada post-minería en el matorral espinoso tamaulipeco. Polibotánica 2016;42(1):1-17.

Valdez C, Guzmán MA, Valdés A, Forougbakhch R, Alvarado MA, Rocha A. Estructura y diversidad de la vegetación en un matorral espinoso prístino de Tamaulipas, México. Rev Biología Trop 2018;66(4):1674-1682.

Pottier J, Jabot F. Non-destructive biomass estimation of herbaceous plant individuals: a transferable method between contrasted environments. Ecological Indicators 2017;(72):769-776.

Mahood AL, Fleishman E, Balch JK, Fogarty F, Horning N, Leu M, et al. Cover-based allometric estimate of aboveground biomass of a non-native, invasive annual grass (Bromus tectorum L.) in the Great Basin, USA. J Arid Environ 2021;(193):104582.

Flombaum P, Sala OE. A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. J Arid Environ 2007;69(2):352-358.

McDonald CJ, McPherson GR. Creating hotter fires in the Sonoran Desert: Buffelgrass produces copious fuels and high fire temperatures. Fire Ecology 2013;39(4):26-39.

Sorensen GE, Wester DB, Rideout-Hanzak S. A nondestructive method to estimate standing crop of purple threeawn and blue grama. Rangeland Ecol Management 2012;65(5):538-542.

INEGI. Instituto Nacional de Estadística y Geografía. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos Marín, Nuevo León. Clave geoestadística 19034. México, 2009.

Oliveras I, Eynden M, Malhi Y, Cahuana N, Menor C, Zamora F, et al. Grass allometry and estimation of above‐ground biomass in tropical alpine tussock grasslands. Austral Ecol 2014;39(4):408-415.

González Y, Mendoza F. Determinación del momento óptimo de cosecha de las semillas de Cenchrus ciliaris híbrido CIH-2. Pastos Forrajes 1996;19(1):59-64.

Martin MH, Cox JR, Ibarra FF. Climatic effects on buffelgrass productivity in the Sonoran Desert. Rangeland Ecol Management/J Range Management Archives 1995;48(1): 60-63.

Johnson PS, Johnson CL, West NE. Estimation of phytomass for ungrazed crested wheatgrass plants using allometric equations. Rangeland Ecol Management/J Range Management Archives 1988;41(5):421-425.

Siller-Clavel P, Badano EI, Villarreal-Guerrero F, Prieto-Amparán JA, Pinedo-Álvarez, et al. Distribution patterns of invasive buffelgrass (Cenchrus ciliaris) in Mexico estimated with climate niche models under the current and future climate. Plants 2022;11(9):1160.

Barnetson J, Phinn S, Scarth P. Estimating plant pasture biomass and quality from UAV imaging across Queensland’s Rangelands. Agri Engineering 2020;2(4):523-543.

Soto-Bravo F, González-Lutz MI. Análisis de métodos estadísticos para evaluar el desempeño de modelos de simulación en cultivos hortícolas. Agronomía Mesoamericana 2019;30(2):517-534.

Martínez DR, Albín JL, Cabaleiro JC, Pena TF, Rivera FF, Blanco V. El criterio de información n de Akaike en la obtención n de Modelos Estadísticos de Rendimiento. Conference: XX Jornadas de Paralelismo. Coruña, España. 2009;439-444.

Cavanaugh JE, Neath AA. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics 2019;11(3):e1460.

INIFAP (Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias). Ajuste de carga animal en tierras de pastoreo, Manual de capacitación. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias Cuajimalpa. México. 2011.

Mills A, Smith M, Moot D. Relationships between dry matter yield and height of rotationally grazed dryland lucerne. N Z Grasslands 2016;(78):185-196.

Publicado

19.01.2024

Cómo citar

Segura-Carmona, J. E., Yerena Yamallel, J. I., Bernal Barragán, H., Alanís Rodríguez, E., Cuéllar Rodríguez, L. G., & Jiménez Pérez, J. (2024). Generación de nuevas ecuaciones para estimar la biomasa aérea a partir de variables morfológicas obtenidas de pastos en agostaderos de Nuevo León, México. Revista Mexicana De Ciencias Pecuarias, 15(1), 1–16. https://doi.org/10.22319/rmcp.v15i1.6457
Metrics
Vistas/Descargas
  • Resumen
    1098
  • PDF
    648
  • PDF
    79
  • Texto completo
    97
  • Full text
    29

Número

Sección

Artículos

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a