Re-seed or not re-seed? Factors affecting rangeland grass-seedling establishment. Review

Autores/as

  • Aldo Torres Sales Universidade Federal de Pernambuco. Pernambuco – Brasil.
  • Carlos Villalobos González Texas Tech University

DOI:

https://doi.org/10.22319/rmcp.v15i3.6541

Palabras clave:

Rangelands, Adventitious root, Rangeland restoration, Seedling establishment, Rangeland reseeding

Resumen

Although seedling has a significant role in the maintenance of plant diversity, productivity, and biochemical cycles in the rangeland. However, little is known about the influence of environmental factors in the seedling establishment, as well as the differences in the morphological development among species. To understand of seedlings establishment becomes of crucial importance to improve the success of reseeding of natural ecosystems. This literature review investigated which factors are addressed with failures in the seedling establishment of native grasses in rangeland conditions. Germinating seed grass is not big a problem if there are optimum environmental conditions. The heart of the matter is to ensure the survival and growth of these seedlings until the complete establishment as plant. The moisture and temperature of soil are the main environmental factors associated with failures in seedling establishment. The studies reviewed showed that annual plants have higher seedling growth rates, however lower allocation to reproductive structures when compared to mid-seral and late successional plants. These differences also promote different rates of seedling survival rate, with early seral grass showing higher rates than late seral. Apparently, the main cause of seedlings failures in the establishment is correlated with the development and extension of the adventitious roots. Where the reports describe that seedling emerge quickly and abundantly in most grasses, but the seedlings died between six and ten weeks of age. It was addressed that a plant can germinate and sprout the primary roots, however, for an unknown reason the plant does not sprout the adventitious root.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Jurado-Guerra P, Velázquez-Martínez, M, Sánchez-Gutiérrez RA, Álvarez-Holguín A, Domínguez-Martínez PA, Gutiérrez-Luna R, Chávez-Ruiz MG. The grasslands and scrublands of arid and semi-arid zones of Mexico: Current status, challenges and perspectives. Rev Mex Cienc Pecu 2021;12(Supl 3):261-285. DOI: https://doi.org/10.22319/rmcp.v12s3.5875

D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW. Global desertification: drivers and feedback. Adv Wat Resour 2013;(51)326- 344. DOI: https://doi.org/10.1016/j.advwatres.2012.01.013

Brown L. World’s rangelands deteriorating under mounting pressure EPI. In: Brown L, editor. Eco-Economy: Building an economy for the earth. W.W. Norton & Company; 2003:115.

Gaitán JJ, Bran DE, Oliva GE, Aguiar MR, Buono GG, Ferrante D et al. Aridity and overgrazing have convergent effects on ecosystem structure and functioning in Patagonian rangelands. Land Deg Develop 2018;29(2):210-218. DOI: https://doi.org/10.1002/ldr.2694

Johnson J, Cash SD, Yeager T, Roberts F, Sowell B. Restoring native plant species in crested wheatgrass rangelands using glyphosate and no-till reseeding. Environ Manag Sustainable Develop 2016;5(2):76. DOI: https://doi.org/10.5296/emsd.v5i2.9844

Rector BS. Rangeland risk management for Texans: Seeding Rangeland; Texas AgriLife Extension Service. Austin; 2000.

Guzman-Aranda JC, Hoth J, Berlanga H: Plan maestro de la alianza regional para la conservación de los pastizales del desierto Chihuahuense. Comisión para la Cooperación Ambiental. Montreal. Book review: Rangeland Ecology, Management and Conservation Benefits. Pastoralism. Springer Berlin Heidelberg; 2017.

Orloff LN, Mangold JM, Menalled FD. Role of size and nitrogen in competition between annual and perennial grasses. Invasive Plant Sci Management 2013;(6):87–98. DOI: https://doi.org/10.1614/IPSM-D-12-00035.1

Esau K. Anatomy of seed plants. 1st. ed. Italy: Wiley; 1977.

Tischler CR, Voigt PW, Holt EC. Adventitious root initiation in kleingrass in relation to seedling size and age. Crop Sci Soc Am 1989;(29):180-189. DOI: https://doi.org/10.2135/cropsci1989.0011183X002900010039x

Newman PR, Moser LE. Seedling root development and morphology of cool-season and warm-season forage grasses. Crop Sci 1988;(28):148-151. DOI: https://doi.org/10.2135/cropsci1988.0011183X002800010032x

Larson JE, Funk JL. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms. New Phytology 2016;210:827-838. DOI: https://doi.org/10.1111/nph.13829

Briske DD, Wilson AM. Moisture and temperature requirements for adventitious root development in blue grama seedlings. J Range Management 1978;31(3):174. DOI: https://doi.org/10.2307/3897173

Leffler AJ, Monaco TA, James JJ. Nitrogen acquisition by annual and perennial grass seedlings: testing the roles of performance and plasticity to explain plant invasion. Plant Ecology 2011;212(10):1601–1611. DOI: https://doi.org/10.1007/s11258-011-9933-z

Chivers IH, Jones TA, Broadhurst LM, Mott IW, Larson SR. The merits of artificial selection for the development of restoration-ready plant materials of native perennial grasses. Restoration Ecol 2016;24(2):174–183. DOI: https://doi.org/10.1111/rec.12323

Maron JL, Pearson DE, Potter T, Ortega YK. Seed size and provenance mediate the joint effects of disturbance and seed predation on community assembly. J Ecology 2012;100(6):1492–1500. DOI: https://doi.org/10.1111/j.1365-2745.2012.02027.x

Hyder DN, Everson AC, Bement RE. Survival and growth of blue grama seedlings in competition with western wheatgrass. J Range Management 1971;24(5):287–292. DOI: https://doi.org/10.2307/3896945

Gommers CMM, Monte E. Seedling establishment: a dimmer switch-regulated process between dark and light signaling. Plant Physiol 2018;176(2):1061–1074. DOI: https://doi.org/10.1104/pp.17.01460

Sluijs DH Van Der, Hyder DN. Growth and longevity of blue grama seedlings restricted to seminal roots. J Range Management 1974;27(2):117-119. DOI: https://doi.org/10.2307/3896745

Atwater DZ, James JJ, Leger EA. Seedling root traits strongly influence field survival and performance of a common bunchgrass. Basic Apply Ecol 2015;16(2):128–140. DOI: https://doi.org/10.1016/j.baae.2014.12.004

Guzmán FJH, Leodan TRO, Mauricio VL. Influencia del tamaño de cariópside y embrión en el desarrollo de plántulas de pastos. Interciencia 2021;309-316.

Rosas-Ramos, Xuxan Alyn. Seed yield variables of five wild Poaceae species in La Siberia, Chapingo, México. Agro Productividad. 2022. DOI: https://doi.org/10.32854/agrop.v15i8.2201

Snyman H. Soil seed bank evaluation and seedling establishment along a degradation gradient in a semi-arid rangeland. African J Range Forage Sci 2004;21(1):37–47. DOI: https://doi.org/10.2989/10220110409485832

Hsu FH, Nelson CJ, Matches AG. Temperature effects on seedling development of perennial warm-season forage grasses. Crop Sci 1985;25(2):249-255. DOI: https://doi.org/10.2135/cropsci1985.0011183X002500020012x

McGinnies WJ. Effects of moisture stress and temperature on germination of six range grasses. Agronomy J 1960;52(3):159-162. DOI: https://doi.org/10.2134/agronj1960.00021962005200030012x

Fay PA, Schultz MJ. Germination, survival, and growth of grass and forb seedlings: Effects of soil moisture variability. Acta Oecologica 2009;35(5):679–684. DOI: https://doi.org/10.1016/j.actao.2009.06.007

Xu L, Myneni RB, Chapin III FS, Callaghan TV, Pinzon JE, Tucker CJ. Temperature and vegetation seasonality diminishment over northern lands. Nat Climate Changing 2013;3(6):581–596. DOI: https://doi.org/10.1038/nclimate1836

Calleja-Cabrera J, Boter M, Oñate-Sánchez L, Pernas M. Root growth adaptation to climate change in crops. Frontiers Plant Sci 2020;(11). DOI: https://doi.org/10.3389/fpls.2020.00544

Gurevitch J, Scheiner S, Fox GA. The ecology of plants. Massachusetts; Sinauer Associate; 2002.

Rajagopalan B, Lall U. Interannual variability in western US precipitation. J Hydrology 1998;210(1):51-67. DOI: https://doi.org/10.1016/S0022-1694(98)00184-X

Loik ME, Breshears DD, Lauenroth WK, Belnap J. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 2004;141(2):269–281. DOI: https://doi.org/10.1007/s00442-004-1570-y

Noy-Meir I. Desert ecosystems: Environment and producers. Annu Rev Ecol Syst. 1973;4(1):25–51. DOI: https://doi.org/10.1146/annurev.es.04.110173.000325

Frasier GW, Woolhiser DA, Cox JR. Emergence and seedling survival of two warm-season grasses as influenced by the timing of precipitation: A Greenhouse Study. J Range Management 1984;37(1):7-11. DOI: https://doi.org/10.2307/3898813

Kambatuku JR, Cramer MD, Ward D. Overlap in soil water sources of savanna woody seedlings and grasses. Ecohydrology 2013;6(3):464–473. DOI: https://doi.org/10.1002/eco.1273

Nippert JB, Wieme RA, Ocheltree TW, Craine JM. Root characteristics of C4 grasses limit reliance on deep soil water in tallgrass prairie. Plant Soil 2012;355(1–2):385–394. DOI: https://doi.org/10.1007/s11104-011-1112-4

Herbel C, Sosebee R. Moisture and temperature effects on emergence and initial growth of two range grasses. Agronomy J 1969;61(4):628-631. DOI: https://doi.org/10.2134/agronj1969.00021962006100040043x

Moles WM. Seedling survival and seed size: a synthesis of the literature. J Ecology 2004;92(3):372–383. DOI: https://doi.org/10.1111/j.0022-0477.2004.00884.x

Ackerly D. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecological Monographs 2004;74(1):25–44. DOI: https://doi.org/10.1890/03-4022

Harrington GN. Effects of soil moisture on shrub seedling survival in semi-arid grassland. Ecology 1991;72(3):1138–1149. DOI: https://doi.org/10.2307/1940611

Davis T, Haissig B. Biology of adventitious root formation. In: 1st International Symposium. 1993:375-331. DOI: https://doi.org/10.1007/978-1-4757-9492-2

Plummer AP. Germination and early seedling development of twelve range grasses. J Am Soc Agron Am Soc Agron 1943;35:19–34. DOI: https://doi.org/10.2134/agronj1943.00021962003500010003x

Pang K, Van Sambeek JW, Navarrete-Tindall NE, Lin C-H, Jose S, Garrett HE. Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. I. Forage yield and its species-level plasticity. Agroforestry Syst 2017;1–14. DOI: https://doi.org/10.1007/s10457-017-0067-8

Tiedemann AR, Klemmedson JO, Ogden PR. Response of four perennial southwestern grasses to shade. J Range Management 1971;24(6):442-447. DOI: https://doi.org/10.2307/3896632

Kato Y, Okami M. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions. Ann Botany 2011;108(3):575–583. DOI: https://doi.org/10.1093/aob/mcr184

Berti MT, Johnson BL. Switchgrass establishment as affected by seeding depth and soil type. Ind Crops Products 2013;41:289–293. DOI: https://doi.org/10.1016/j.indcrop.2012.04.023

Nasso NN, Lasorella MV, Roncucci N, Bonari E. Soil texture and crop management affect switchgrass (Panicum virgatum L.) productivity in the Mediterranean. Industrial Crops 2015;(65):21–26. DOI: https://doi.org/10.1016/j.indcrop.2014.11.017

Lueck AG, Sprague V, Garber RJ, Garber RJ. The effects of a companion crop and depth of planting on the establishment of smooth bromegrass, Bromus inermis Leyss. Agronomy J 1949;41:137–140. DOI: https://doi.org/10.2134/agronj1949.00021962004100040001x

Fan J-W, Du Y-L, Turner NC, Li F-M, He J. Germination characteristics and seedling emergence of switchgrass with different agricultural practices under arid conditions in China Crop Sci 2012;52(5):2341-2350. DOI: https://doi.org/10.2135/cropsci2011.11.0603

Anderson JE. Some effects of date of planting, depth of planting, and fertilization on the performance of five important native grasses of Texas. J Range Management 1956;(9):46–52.

Zhu Y, Yang X, Baskin CC, Baskin JM, Dong M, Huang Z. Effects of amount and frequency of precipitation and sand burial on seed germination, seedling emergence and survival of the dune grass Leymus secalinus in semiarid China. Plant Soil 2014;(374):399–409. DOI: https://doi.org/10.1007/s11104-013-1892-9

Boyd NS, Van Acker RC. The effects of depth and fluctuating soil moisture on the emergence of eight annual and six perennial plant species. Weed Sci 2003;(51):725–730. DOI: https://doi.org/10.1614/P2002-111

Bewley JD, Bradford KJ, Kent J, Hilhorst HWM, Nonogaki H. Seeds: physiology of development germination, and dormancy. New York, USA: Springer; 2013. DOI: https://doi.org/10.1007/978-1-4614-4693-4

Harris GA. Root phenology as a factor of competition among grass seedlings. J Range Management 1977;30(3):172-177. DOI: https://doi.org/10.2307/3897461

Alhamad MN, Noor M. Impact of grazing and life forms interactions on plant communities in arid areas. EGU Gen Assem. Vienna. 2015:12-17.

Larson JE, Sheley RL, Hardegree SP, Doescher PS, James JJ. Seed and seedling traits affecting critical life stage transitions and recruitment outcomes in dryland grasses. J Appl Ecology 2015;(52):199–209. DOI: https://doi.org/10.1111/1365-2664.12350

Gutiérrez-Gutierrez OG, Rivero-Hernández O, Vega-Mares JH, Melgoza-Castillo A. Germination patterns on grasses present at the Chihuahuan desert. Botanical Sciences 2022;(100)4:989-999. DOI: https://doi.org/10.17129/botsci.3007

Chen Y, Palta J, Prasad PV, Siddique KH. Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC Plant Biol 2020;(20):1-16. DOI: https://doi.org/10.1186/s12870-020-02390-8

Tessema ZK, de Boer WF, Prins HHT. Changes in grass plant populations and temporal soil seed bank dynamics in a semi-arid African savanna: Implications for restoration. J Environ Management 2016;(182):166–175. DOI: https://doi.org/10.1016/j.jenvman.2016.07.057

Manea A, Leishman MR. Competitive interactions between established grasses and woody plant seedlings under elevated CO2 levels are mediated by soil water availability. Oecologia 2015;(177):499–506. DOI: https://doi.org/10.1007/s00442-014-3143-z

Ries RE, Svejcar TJ. The Grass Seedling: When Is It Established? J Range Management 1991;(44):574-576. DOI: https://doi.org/10.2307/4003038

Harris GA, Wilson AM. Competition for moisture among seedlings of annual and perennial grasses as influenced by root elongation at low temperature. Ecology 1970;(51):530–534. DOI: https://doi.org/10.2307/1935392

Coll L, Balandier P, Picon-Cochard C. Morphological and physiological responses of beech (Fagus sylvatica) seedlings to grass-induced belowground competition. Tree Physiol 2004;(24):45–54. DOI: https://doi.org/10.1093/treephys/24.1.45

Florentine SK, Weller S, Graz PF, Westbrooke M, Florentine A, Javaid M. Influence of selected environmental factors on seed germination and seedling survival of the arid zone invasive species tobacco bush (Nicotiana glauca R. Graham). Rangeland J 2016;(38):417- 427. DOI: https://doi.org/10.1071/RJ16022

Sheley RL, James JJ. Simultaneous intraspecific facilitation and interspecific competition between native and annual grasses. J Arid Environ 2014;(104):80–87. DOI: https://doi.org/10.1016/j.jaridenv.2014.01.019

Bernard-Verdier M, Navas ML, Vellend M, Violle C, Fayolle A, Garnier E. Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J Ecol 2012;100(6):1422–1433. DOI: https://doi.org/10.1111/1365-2745.12003

Crews TE, DeHaan LR. The strong perennial vision: A response. Agroecol Sustain Food Syst 2015;(39):500–515. DOI: https://doi.org/10.1080/21683565.2015.1008777

Sanderson MA, Schmer M, Owens V, Keyser P, Elbersen W. Crop management of switchgrass. London: Springer; 2012:87–112. DOI: https://doi.org/10.1007/978-1-4471-2903-5_4

Whalley RDB, McKell CM, Green LR. Seedling vigor and the early nonphotosynthetic stage of seedling growth in grasses. Crop Sci 1966;(6):147-150. DOI: https://doi.org/10.2135/cropsci1966.0011183X000600020012x

Haling RE, Richardson AE, Culvenor RA, Lambers H, Simpson RJ. Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity. Plant Soil. Springer Netherlands 2010;(335):457–468. DOI: https://doi.org/10.1007/s11104-010-0433-z

Leck MA, Parker VT, Simpson R. Seedling ecology and evolution. 1st ed. UK: Cambridge University Press; 2008. DOI: https://doi.org/10.1017/CBO9780511815133

Smart AJ, Vogel KP, Moser LE, Stroup WW. Divergent selection for seedling tiller number in big bluestem and switchgrass. Crop Sci 2003;(43):1427-1433. DOI: https://doi.org/10.2135/cropsci2003.1427

Detling JK. Processes controlling blue grama production on the shortgrass prairie. In: French N, editor. Perspectives in grassland ecology. Springer. New York: Springer, New York, NY; 1979:25–42. DOI: https://doi.org/10.1007/978-1-4612-6182-7_3

Sánchez-Valdés JJ, Vega-García JI, González FL, Colín-Navarro V, Marín-Santana MN, Ávila-González R, Gómez-Miranda, A. Festulolium and annual ryegrass pastures associated with white clover for small-scale dairy systems in high valleys of Mexico. Agro Productividad 2023;16(4):32–42. DOI: https://doi.org/10.32854/agrop.v16i3.2385

Krassovsky I. Physiological activity of the seminal and nodal roots of crop plants. Soil Sci 1926;24(4):307-311. DOI: https://doi.org/10.1097/00010694-192604000-00006

Publicado

12.08.2024

Cómo citar

Torres Sales, A., & Villalobos González, C. (2024). Re-seed or not re-seed? Factors affecting rangeland grass-seedling establishment. Review. Revista Mexicana De Ciencias Pecuarias, 15(3), 700–720. https://doi.org/10.22319/rmcp.v15i3.6541
Metrics
Vistas/Descargas
  • Resumen
    325
  • PDF
    136
  • PDF
    23
  • Texto completo
    13
  • Full text
    18

Número

Sección

Revisiones bibliográficas

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a