Efecto prebiótico de dos fuentes de inulina en el crecimiento in vitro de Lactobacillus salivarius y Enterococcus faecium

Autores/as

  • Marco Antonio Ayala Monter Programa de Ganadería, Colegio de Postgraduados. Estado de México, México.
  • David Hernández Sánchez Programa de Ganadería, Colegio de Postgraduados. Estado de México, México.
  • René Pinto Ruiz Facultad de Ciencias Agronómicas, Universidad Autónoma de Chiapas. Chiapas, México.
  • Sergio S. González Muñoz Programa de Ganadería, Colegio de Postgraduados. Estado de México, México.
  • José Ricardo Bárcena Gama Programa de Ganadería, Colegio de Postgraduados. Estado de México, México.
  • Omar Hernández Mendo Programa de Ganadería, Colegio de Postgraduados. Estado de México, México.
  • Nicolás Torres Salado Unidad Académica de Medicina Veterinaria y Zootecnia No. 2, Universidad Autónoma de Guerrero. Guerrero, México.

DOI:

https://doi.org/10.22319/rmcp.v9i2.4488

Palabras clave:

Agave tequilana, Cichorium intybus, Prebiótico, Probiótico, in vitro.

Resumen

Las diarreas en especies pecuarias son controladas con antibióticos, pero su uso inadecuado causa problemas de resistencia bacteriana. Las bacterias ácido lácticas (BAL) en la microbiota intestinal ejercen exclusión competitiva contra patógenos causantes de diarreas, y la inulina es un sustrato para las BAL. Por lo tanto, el objetivo de este estudio fue determinar el efecto prebiótico de dos fuentes de inulina en el crecimiento in vitro de Lactobacillus salivarius (Ls) y Enterococcus faecium (Ef), con el uso de Lactobacillus casei (Lc) como control positivo. Las incubaciones in vitro se realizaron a 37 °C, con sustitución de glucosa por inulina de achicoria (IAc) o de agave (IAg) en el medio MRS. Los tratamientos (T) evaluados fueron T1: MRS-glucosa+Lc; T2: MRS-IAc+Lc, T3: MRS-IAc+Ls, T4: MRS-IAc+Ef, T5: MRS-IAg+Lc, T6: MRS-IAg+Ls y T7: MRS-IAg+Ef. La curva y la tasa de crecimiento se determinaron mediante densidad óptica (630 nm) a las 0, 3, 6, 12, 24, 30, 36, 48, 54 y 60 h. El diseño experimental fue completamente al azar, los datos se analizaron con PROC GLM (SAS) y la comparación de medias se realizó mediante la prueba de Tukey. Los tratamientos con MRS-IAg mostraron mayores (P<0.05) tasas de crecimiento (0.51a, 0.50a y 0.50a h-1, T5, T6 y T7, respectivamente) y resultaron similares al control positivo (T2) cuando creció en MRS-IAc (0.48a h-1). El pH durante el crecimiento fue diferente entre tratamientos (P<0.05). La inulina de agave favorece el crecimiento de bacterias probióticas como Lactobacillus salivarius y Enterococcus faecium, y su efecto prebiótico supera a la inulina de achicoria.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Marco Antonio Ayala Monter, Programa de Ganadería, Colegio de Postgraduados. Estado de México, México.

Posgrado de Ganadería

Estudiante de Doctorado

David Hernández Sánchez, Programa de Ganadería, Colegio de Postgraduados. Estado de México, México.

Posgrado de Ganadería

Profesor Investigador Titular

René Pinto Ruiz, Facultad de Ciencias Agronómicas, Universidad Autónoma de Chiapas. Chiapas, México.

Nutrición de Rumiantes en Pastoreo

Profesor Investigador

Sergio S. González Muñoz, Programa de Ganadería, Colegio de Postgraduados. Estado de México, México.

Posgrado de Ganadería

Profesor Investigador Titular

José Ricardo Bárcena Gama, Programa de Ganadería, Colegio de Postgraduados. Estado de México, México.

Posgrado de Ganadería

Profesor Investigador Titular

Omar Hernández Mendo, Programa de Ganadería, Colegio de Postgraduados. Estado de México, México.

Posgrado de Ganadería

Profesor Investigador Titular

Nicolás Torres Salado, Unidad Académica de Medicina Veterinaria y Zootecnia No. 2, Universidad Autónoma de Guerrero. Guerrero, México.

Nutrición de Rumiantes

Profesor Investigador

Citas

Li S, Cui D, Wang S, Wang H, Huang M, Qi Z, et al. Efficacy of an herbal granule as treatment option for neonatal Tibetan lamb diarrhea under field conditions. Livest Sci 2015;172:79–84.

Woolhouse M, Ward M, van Bunnik B, Farrar J. Antimicrobial resistance in humans, livestock and the wider environment. Phil Trans R Soc B 2015;370–377.

Beyene T. Veterinary drug residues in food-animal products: Its risk factors and potential effects on public health. J Vet Sci Technol 2016;7(1):1-7.

Yirga H. The use of probiotics in animal nutrition. J Prob Health 2015;3(2):1–10.

Samanta AK, Jayapal N, Senani S, Kolte AP, Sridhar M. Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora. Braz J Microbiol 2013;44(1):1–14.

Roberfroid M, Gibson G, Hoyles L, McCartney A, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010;104(2):1–63.

Messaoudi S, Manai M, Kergourlay G, Prévost H, Connil N, Chobert JM, et al. Review: Lactobacillus salivarius: Bacteriocin and probiotic activity. Food Microbiol 2013;36:296–304.

Leroy G, Grongnet JF, Mabeau S, Le Corre D, Baty JC. Changes in inulin and soluble sugar concentration in artichokes (Cynara scolymus L.) during storage. J Sci Food Agric 2010;90:1203–1209.

Carranza OC, Ávila FA, Bustillo AGR, López-Munguía A. Processing of fructans and oligosaccarides from agave plants. In: Preedy RV editor. Processing and impact on active components in food. 1ª ed. USA: Academic Press; 2015:121–129.

Díaz-Vela J, Mayorga-Reyes L, Alfonso-Totosaus SA, Pérez-Chabela ML. Kinetics parameters and short chain fatty acids profiles of thermotolerant lactic acid bacteria with different carbon sources. VITAE 2012;19(3):253–260.

Moreno-Vilet L, Camacho-Ruiz RM, Portales-Pérez DP. Prebiotic agave fructans and immune aspects. In: Watson RR, Preedy RV editors. Probiotics, prebiotics, and synbiotics. Bioactive foods in health promotion. USA: Academic Press; 2016:165-179.

Mueller M, Reiner J, Fleischhacker L, Viernstein H, Loeppert R, Praznik W. Growth of selected probiotic strains with fructans from different sources relating to degree of polymerization and structure. J Funct Foods 2016;24:264–275.

Mueller M, Schwarz S, Viernstein H, Loeppert R, Praznik W. Growth of selected probiotic strains with fructans from agaves and chicory. Agro Food Ind Hi Tech 2016;27(3):54–57.

Velázquez-Martínez JR, González-Cervantes RM, Hernández-Gallegos MA, Mendiola RC, Aparicio AR, Ocampo ML. Prebiotic potential of Agave angustifolia haw fructans with different degrees of polymerization. Molecules 2014;19(8):12660–12665.

García-Curbelo Y, Bocourt R, Savon LL, García-Vieyra MI, López MG. Prebiotic effect of Agave fourcroydes fructans: an animal model. Food Funct 2015;6(9):3177–3182.

Márquez-Aguirre AL, Camacho-Ruíz RM, Gutiérrez-Mercado YK, Padilla-Camberos E, González-Ávila M, Gálvez-Gastélum FJ, et al. Fructans from Agave tequilana with a lower degree of polymerization prevent weight gain, hyperglycemia and liver steatosis in high-fat diet-induced obese mMice. Plant Foods Hum Nutr 2016;71:416–421.

Caballero CY. Aislamiento e identificación de bacterias ácido lácticas con potencial probiótico en bovinos Holstein [tesis maestría]. México: Colegio de Postgraduados; 2014.

Gómez HJL. Inulina como prebiótico para Lactobacillus salivarius y Enterococcus faecium con potencial probiótico en rumiantes [tesis maestría]. México: Colegio de Postgraduados; 2015.

de Man JC, Rogosa M, Sharpe ME. A medium for the cultivation of lactobacilli. J Appl Bacteriol 1960;23:130–135.

Arrizon J, Morel S, Gschaedler A, Monsan P. Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chem 2010;122:123–130.

Praznik W, Löppert R, Cruz RJM, Zangger K, Huber A. Structure of fructo-oligosaccharides from leaves and stem of Agave tequilana Weber, var. Azul. Carbohyd Res 2013;381:64–73.

McKay AL, Peters AC, Wimpenny JWT. Determining specific growth rates in different regions of Salmonella typhimurium colonies. Lett Appl Microbiol 1997;24(1):74–76.

SAS. SAS/STAT User’s Guide (9.4) Cary NC, USA: SAS Inst. Inc. 2013.

Costabile A, Kolida S, Klinder A, Gietl E, Buerlein M, Frohberg C, et al. A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br J Nutr 2010;104(7):1007–1017.

Slavin J, Feirtag J. Chicory inulin does not increase stool weight or speed up intestinal transit time in healthy male subjects. Food Funct 2011;2(1):72–77.

Apolinário CA, de Lima Damasceno BPG, de Macêdo BNE, Pessoa A, Converti A, da Silva J. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohyd Polym 2014;101:368–378.

Shoaib M, Shehzada A, Mukama O, Rakha A, Raza H, Sharif HR, et al. Inulin: Properties, health benefits and food applications. Carbohyd Polym 2016;147:444–454.

Mancilla MNA, López MG. Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. J Agric Food Chem 2006;54(20):7832–7839.

Pinal L, Cornejo F, Arellano M, Herrera E, Nuñez L, Arrizon J, et al. Effect of Agave tequilana age, cultivation field location and yeast strain on tequila fermentation process. J Indust Microbiol Biot 2009;36(5):655-661.

Mellado-Mojica E, López MG. Fructan metabolism in A. tequilana weber Blue variety along its developmental cycle in the field. J Agric Food Chem 2012;60:11704–11713.

Ito H, Takemura N, Sonoyama K, Kawagishi H, Topping DL, Conlon MA, et al. Degree of polymerization of inulin-type fructans differentially affects number of lactic acid bacteria, intestinal immune functions, and immunoglobulin a secretion in the rat cecum. J Agr Food Chem 2011;59:5771–5778.

Takagi R, Tsujikawa Y, Nomoto R, Osawa R. Comparison of the growth of Lactobacillus delbrueckii, L. paracasei and L. plantarum on inulin in co-culture systems. Biosci Microb Food Health 2013;33(4):139–146.

Tsujikawa Y, Nomoto R, Osawa R. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei. Biosci Microb Food Health 2013;32(4):157–165.

Saminathan M, Sieo CC, Kalavathy R, Abdullah N, Ho YW. Effect of prebiotic oligosaccharides on growth of Lactobacillus strains used as a probiotic for chickens. Afr J Microbiol Res 2011;5(1):57–64.

Morandi S, Brasca M, Alfieri P, Lodi R, Tamburini A. Influence of pH and temperature on the growth of Enterococcus faecium and Enterococcus faecalis. Lait 2005;85(3)181–192.

Carvalho AL, Turner DL, Fonseca LL, Solopova A, Catarino T, Kuipers OP, et al. Metabolic and transcriptional analysis of acid stress in Lactococcus lactis, with a focus on the kinetics of lactic acid pools. PLoS ONE 2013;8(7):68470.

van Schaik W, Top J, Riley RD, Boekhorst J, Vrijenhoek EPJ, Schapendonk MEC, et al. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics 2010;11:1-18.

Chowdhury R, Banerjee D, Bhattacharya P. The prebiotic influence of inulin on growth rate and antibiotic sensitivity of Lactobacillus casei. Int J Pharm Pharm Sci 2016;8(4):181–184.

Paludan-Müller C, Madsen M, Sophanodora P, Gram L, Moller PL. Fermentation and microflora of plaa-som, a thai fermented fish product prepared with different salt concentrations. Int J Food Microbiol 2002;73:61–70.

Falony G, Lazidou K, Verschaeren A, Weckx S, Maes D, De Vuyst L. In vitro kinetic analysis of fermentation of prebiotic inulin-type fructans by Bifidobacterium species reveals four different phenotypes. J Appl Microbiol 2009;75(2):454–461.

Tabasco R, Fernández PP, Fontecha J, Peláez C, Requena T. Competition mechanisms of lactic acid bacteria and bifidobacteria: Fermentative metabolism and colonization. Food Sci Technol 2014;55:680–684.

Saulnier DMA, Molenaar D, de Vos, WM, Gibson GR, Kolida S. Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl Environ Microb 2007;73(6):1753–1765.

Watson D, O’Connell MM, Schoterman MHC, van Neerven RJ, Nauta A, van Sinderen D. Selective carbohydrate utilization by lactobacilli and bifidobacteria. J Appl Microbiol 2013;114:1132–1146.

Özcelik S, Kuley E, Özogul F. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. Food Sci Technol 2016;73:536–542.

Pompei A, Cordisco L, Raimondi S, Amaretti A, Pagnoni AM. In vitro comparation of the prebiotic effect of two inulin-type fructans. Aerobe 2008;14:280–286.

Sanhueza E, Paredes-Osses E, González CL, García A. Effect of pH in the survival of Lactobacillus salivarius strain UCO_979C wild type and the pH acid acclimated variant. Electron J Biotechno 2015;18:343–346.

Tang J, Wang X, Hu Y, Zhang Y, Li Y. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR. Waste Manage 2016;52:278–285.

Panesar PS, Kennedy JF, Knill JC, Kosseva M. Production of L (+) Lactic acid using Lactobacillus casei from whey. Braz Arch Biol Technol 2010;53(1):219–226.

Ai Z, Lv X, Huang S, Liu G, Sun X, Chen H, Sun J, Feng Z. The effect of controlled and uncontrolled pH cultures on the growth of Lactobacillus delbrueckii subsp. Bulgaricus. Food Sci Technol 2017:77:269–275.

Descargas

Publicado

28.03.2018

Cómo citar

Ayala Monter, M. A., Hernández Sánchez, D., Pinto Ruiz, R., González Muñoz, S. S., Bárcena Gama, J. R., Hernández Mendo, O., & Torres Salado, N. (2018). Efecto prebiótico de dos fuentes de inulina en el crecimiento in vitro de Lactobacillus salivarius y Enterococcus faecium. Revista Mexicana De Ciencias Pecuarias, 9(2), 346–361. https://doi.org/10.22319/rmcp.v9i2.4488
Metrics
Vistas/Descargas
  • Resumen
    1831
  • PDF
    853
  • XML
    365

Número

Sección

Notas de investigación

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a