Estrés oxidativo y el uso de antioxidantes en la producción in vitro de embriones mamíferos. Revisión

Autores/as

  • Viviana Torres-Osorio Universidad Nacional de Colombia, Grupo de Investigación BIOGEM. Medellín, Colombia.
  • Rodrigo Urrego Universidad CES, Facultad de Medicina Veterinaria y Zootecnia, Grupo INCA-CES. Medellín, Colombia.
  • José Julián Echeverri Zuluaga Universidad Nacional de Colombia, Grupo de Investigación BIOGEM. Medellín, Colombia.
  • Albeiro López-Herrera Universidad Nacional de Colombia, Grupo de Investigación BIOGEM. Medellín, Colombia.

DOI:

https://doi.org/10.22319/rmcp.v10i2.4652

Palabras clave:

Antioxidantes, Especies reactivas de oxígeno, Estrés oxidativo, Cultivo in vitro, Desarrollo embrionario

Resumen

La producción de embriones in vitro es una de las biotecnologías de la reproducción animal que ha presentado mayor desarrollo en las últimas dos décadas; sin embargo, los resultados exitosos en estos procedimientos dependen de múltiples factores, entre ellos la presencia de especies reactivas de oxígeno, debido a que el proceso de fertilización in vitro y la manipulación de los gametos y embriones expone a las células a factores endógenos y exógenos que pueden afectar los mecanismos de defensa antioxidante y por consiguiente la calidad de los gametos y embriones. En esta revisión se discutirán algunas fuentes de especies reactivas de oxígeno, el uso de antioxidantes enzimáticos, no enzimáticos y polifenólicos para disminuir el estrés oxidativo en los procesos de producción in vitro de embriones, y su efecto sobre la calidad de los oocitos y embriones, la expresión génica y su competencia para el desarrollo embrionario.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Viviana Torres-Osorio, Universidad Nacional de Colombia, Grupo de Investigación BIOGEM. Medellín, Colombia.

Grupo Biodiversidad y Genética Molecular BIOGEM

Facultad de Ciencias

Universidad Nacional de Colombia

 

 

 

Rodrigo Urrego, Universidad CES, Facultad de Medicina Veterinaria y Zootecnia, Grupo INCA-CES. Medellín, Colombia.

Grupo INCA-CES, Facultad de Medicina Veterinaria y Zootecnia

Profesor Asociado

Universidad CES

José Julián Echeverri Zuluaga, Universidad Nacional de Colombia, Grupo de Investigación BIOGEM. Medellín, Colombia.

Grupo Biodiversidad y Genética Molecular BIOGEM

Profesor Asociado

Universidad Nacional de Colombia

Albeiro López-Herrera, Universidad Nacional de Colombia, Grupo de Investigación BIOGEM. Medellín, Colombia.

Grupo Biodiversidad y Genética Molecular BIOGEM

Docente investigador dedicación exclusiva

Universidad Nacional de Colombia

Citas

Park JI, Hong JY, Yong HY, Hwang WS, Lim JM, Lee ES. High oxygen tension during in vitro oocyte maturation improves in vitro development of porcine oocytes after fertilization. Anim Reprod Sci. 2005;87(1–2):133–41.

du Plessis SS, Makker K, Desai NR, Agarwal A. Impact of oxidative stress on IVF. Expert Rev Obstet Gynecol. 2008;3(4):539–54.

Martín-Romero FJ, Miguel-Lasobras EM, Domínguez-Arroyo JA, González-Carrera E, Alvarez IS. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod Biomed Online. 2008;17(5):652–61.

Will MA, Clark NA, Swain JE. Biological pH buffers in IVF: help or hindrance to success. J Assist Reprod Genet. 2011;28(8):711–24.

Li Z, Zhou Y, Liu R, Lin H, Liu W, Xiao W, et al. Effects of semen processing on the generation of reactive oxygen species and mitochondrial membrane potential of human spermatozoa. Andrologia. 2012;44(3):157–63.

Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32(1):1–17.

Blanco MR, Demyda S, Moreno Millán M, Genero E. Developmental competence of in vivo and in vitro matured oocytes: A review. Anim Reprod Sci. 2012;9(3):281–9.

Ali AA, Bilodeau JF, Sirard MA. Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology. 2003;59(3–4):939–49.

Vásquez NA, Torres V, Rojano BA. Efecto del ácido ascórbico durante maduración in vitro de oocitos bovinos en la producción de especies reactivas de oxígeno (ERO) y competencia para el desarrollo embrionario effect of ascorbic acid during bovine oocytes in vitro maturation on reactive. Inf Tecnol. 2014;25(2):141–50.

Olson SE, Seidel GE. Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol Reprod. 2000;62(2):248–52.

Jeong YW, Park SW, Hossein MS, Kim S, Kim JH, Lee SH, et al. Antiapoptotic and embryotrophic effects of a-tocopherol and L-ascorbic acid on porcine embryos derived from in vitro fertilization and somatic cell nuclear transfer. Theriogenology. 2006;66(9):2104–12.

Kere M, Siriboon C, Lo N-W, Nguyen NT, Ju J-C. Ascorbic acid improves the developmental competence of porcine oocytes after parthenogenetic activation and somatic cell nuclear transplantation. J Reprod Dev. 2013;59(1):78–84.

Rikans LE, Hornbrook KR. Lipid peroxidation, antioxidant protection and aging. Biochim Biophys Acta. 1997;1362(2–3):116–27.

Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1–2):23–38.

David SS, O’Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature. 2007;447(7147):941–50

Selivanov VA, Votyakova T V., Pivtoraiko VN, Zeak J, Sukhomlin T, Trucco M, et al. Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain. Beard DA, editor. PLoS Comput Biol. 2011;7(3):e1001115.

Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A. 1997;94(2):514–9.

Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47.

Chinnery PF, Elliott HR, Hudson G, Samuels DC, Relton CL. Epigenetics, epidemiology and mitochondrial DNA diseases. Int J Epidemiol. 2012;41(1):177–87.

Han Y, Chen JZ. Oxidative Stress Induces Mitochondrial DNA Damage and Cytotoxicity through Independent Mechanisms in Human Cancer Cells. Biomed Res Int. 2013;1–8.

Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21):2003–14.

Kirkinezos IG, Moraes CT. Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol. 2001;12(6):449–57.

Guerin P, Mouatassim S, Menezo Y. Oxidative stress and protection against reaction oxygen species in the pre-implantation embryo and its surroundings. Reprod Updat. 2001;7(2):175–89.

Iwata H, Akamatsu S, Minami N, Yamada M. Allopurinol, an inhibitor of xanthine oxidase, improves the development of IVM/IVF bovine embryos (>4 cell) in vitro under certain culture conditions. Theriogenology. 1999 Feb;51(3):613–22

Iwata H, Akamatsu S, Minami N, Yamada M. Effects of antioxidants on the development of bovine IVM/IVF embryos in various concentrations of glucose. Theriogenology. 1998;50(3):365–75.

Covarrubias L, Hernández-García D, Schnabel D, Salas-Vidal E, Castro-Obregón S. Function of reactive oxygen species during animal development: Passive or active? Dev Biol. 2008;320(1):1–11.

Hernández-García D, Wood CD, Castro-Obregón S, Covarrubias L. Reactive oxygen species: A radical role in development? Free Radic Biol Med. 2010;49(2):130–43.

Chen S, Allam J-P, Duan Y, Haidl G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet. 2013;288(1):191–9.

Henkel RR. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13(1):43–52.

Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010;48(5):425–35.

Agarwal A, Durairajanayagam D, du Plessis SS. Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod Biol Endocrinol. 2014;12:112.

Gupta S, Sekhon L, Kim Y, Agarwal A. The Role of Oxidative Stress and Antioxidants in Assisted Reproduction. Curr Womens Health Rev. 2010;6(3):227–38.

Corrêa GA, Rumpf R, Mundim TCD, Franco MM, Dode MAN. Oxygen tension during in vitro culture of bovine embryos: Effect in production and expression of genes related to oxidative stress. Anim Reprod Sci. 2008;104(2–4):132–42.

Oyamada T, Fukui Y. Oxygen tension and medium supplements for in vitro maturation of bovine oocytes cultured individually in a chemically defined medium. J Reprod Dev. 2004;50(1):107–17.

Balasubramanian S, Son WJ, Kumar BM, Ock SA, Yoo JG, Im GS, et al. Expression pattern of oxygen and stress-responsive gene transcripts at various developmental stages of in vitro and in vivo preimplantation bovine embryos. Theriogenology. 2007;68(2):265–75.

Karagenc L, Sertkaya Z, Ciray N, Ulug U, Bahçeci M. Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod Biomed Online.;9(4):409–17.

Kitagawa Y, Suzuki K, Yoneda A, Watanabe T, Agarwal A, Sharma RK, et al. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 2004;62(7):1186–97.

Booth PJ, Holm P, Callesen H. The effect of oxygen tension on porcine embryonic development is dependent on embryo type. Theriogenology. 2005;63(7):2040–52.

Batt P, Gardner D, Cameron A. Oxygen concentration and protein source affect the development of preimplantation goat embryos in vitro. Reprod Fertil Dev. 1991; 3(5):601.

Takahashi M, Keicho K, Takahashi H, Ogawa H, Schultz RM, Okano A. Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by comet assay. Theriogenology. 2000, 54(1):137–45.

Bontekoe S, Mantikou E, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane database Syst Rev. 2012;(7):CD008950.

Bermejo-Álvarez P, Lonergan P, Rizos D, Gutiérrez-Adan A. Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod Biomed Online. 2010;20(3):341–9.

Rinaudo P, Giritharan G, Talbi S, Dobson A, Schultz R, Katoh Y, et al. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006;86(4):1265.e1-1265.e36.

Combelles CMH, Gupta S, Agarwal A. Could oxidative stress influence the in-vitro maturation of oocytes? Reprod Biomed Online. 2009;18(6):864–80.

Guerin P. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7(2):175–89.

Conklin DJ, Langford SD, Boor PJ. Contribution of serum and cellular semicarbazide-sensitive amine oxidase to amine metabolism and cardiovascular toxicity. Toxicol Sci. 1998;46(2):386–92.

Stites TE, Mitchell AE, Rucker RB. Physiological importance of quinoenzymes and the O-quinone family of cofactors. J Nutr. 2000;130(4):719–27.

Sudano MJ, Paschoal DM, da Silva Rascado T, Magalhães LCO, Crocomo LF, de Lima-Neto JF, et al. Lipid content and apoptosis of in vitro-produced bovine embryos as determinants of susceptibility to vitrification. Theriogenology. 2011;75(7):1211–20.

Rizos D, Gutiérrez-Adán A, Pérez-Garnelo S, De La Fuente J, Boland MP, Lonergan P. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod. 2003;68(1):236–43.

Almeida T, Tetzner D, Saraiva NZ, Perecin F, Cristina S, Niciura M, et al. The effects of ovalbumin as a protein source during the in vitro production of bovine embryos. Rev Bras Zootec. 2011;40(10):2135–41.

Shahar S, Wiser A, Ickowicz D, Lubart R, Shulman A, Breitbart H. Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility. Hum Reprod. 2011;26(9):2274–82.

Takenaka M, Horiuchi T, Yanagimachi R. Effects of light on development of mammalian zygotes. Proc Natl Acad Sci U S A. 2007;104(36):14289–93.

Li R, Liu Y, Pedersen HS, Callesen H. Effect of ambient light exposure of media and embryos on development and quality of porcine parthenogenetically activated embryos. Zygote. 2015;23(3):378–83.

Lampiao F, Strijdom H, Du Plessis S. Effects of Sperm Processing Techniques Involving Centrifugation on Nitric Oxide, Reactive Oxygen Species Generation and Sperm Function. Open Androl J. 2010; 2:1–5.

Urrego R, Ríos A, Ángel MO, Camargo O. Efecto de la centrifugación sobre la membrana plasmática y el ADN de espermatozoides bovinos. Rev Colomb Ciencias Pecu. 2008;21(1):19–26.

Ángel D, Pérez N, Pareja A, Camargo O, Urrego R. Efecto de la preparación espermática previo a la fertilización sobre la membrana plasmática y el adn de semen bovino sexado in vitro. Rev CES. 2009;4(2):29–37.

Jayaraman V, Upadhya D, Narayan PK, Adiga SK. Sperm processing by swim-up and density gradient is effective in elimination of sperm with DNA damage. J Assist Reprod Genet. 2012;29(6):557–63.

Hashimoto S, Minami N, Yamada M, Imai H. Excessive concentration of glucose during in vitro maturation impairs the developmental competence of bovine oocytes after in vitro fertilization: Relevance to intracellular reactive oxygen species and glutathione contents. Mol Reprod Dev. 2000;56(4):520–6.

Krisher RL, Brad AM, Herrick JR, Sparman ML, Swain JE. A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation. Anim Reprod Sci. 2007;98(1–2):72–96.

Hashimoto S, Minami N, Takakura R, Yamada M. Low Oxygen Tension During In Vitro Maturation is Beneficial for Supporting the Subsequent Development of Bovine Cumulus ± Oocyte Complexes. Mol Reprod Dev. 2000;360(March).

Seino T, Saito H, Kaneko T, Takahashi T, Kawachiya S, Kurachi H. Eight-hydroxy-2’-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an in vitro fertilization-embryo transfer program. Fertil Steril. 2002;77(6):1184–90.

Tirzitis G, Bartosz G. Determination of antiradical and antioxidant activity: Basic principles and new insights. Acta Biochim Pol. 2010;57(2):139–42.

Kirschvink N, Moffarts B De, Lekeux P. The oxidant/antioxidant equilibrium in horses. Vet J. 2008;177(2):178–91.

Battin EE, Brumaghim JL. Antioxidant activity of sulfur and selenium: A review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys. 2009;55(1):1–23.

de Matos DG, Gasparrini B, Pasqualini SR, Thompson JG. Effect of glutathione synthesis stimulation during in vitro maturation of ovine oocytes on embryo development and intracellular peroxide content. Theriogenology. 2002 Mar;57(5):1443–51.

Zuelke K a., Jeffay SC, Zucker RM, Perreault SD. Glutathione (GSH) concentrations vary with the cell cycle in maturing hamster oocytes, zygotes, and pre-implantation stage embryos. Mol Reprod Dev. 2003;64(1):106–12.

Miyamura M, Yoshida M, Hamano S, Kuwayama M. Glutathione concentration during maturation and fertilization in bovine oocytes. Theriogenology. 1995;43(1):282.

De Matos DG, Furnus CC, Moses DF, Martinez A. G, Matkovic M. Stimulation of glutathione synthesis of in vitro matured bovine oocytes and its effect on embryo development and freezability. Mol Reprod Dev. 1996;45(4):451–7.

de Matos DG, Furnus CC, Moses DF. Glutathione synthesis during in vitro maturation of bovine oocytes: role of cumulus cells. Biol Reprod. 1997;57(6):1420–5.

Halliwell B, Gutteridge JM. The antioxidants of human extracellular fluids. Arch Biochem Biophys. 1990;280(1):1–8.

Vásquez NA, Torres V, Rojano BA. Efecto del ácido ascórbico durante maduración in vitro de oocitos bovinos en la producción de especies reactivas de oxígeno (ERO) y competencia para el desarrollo embrionario. Inf Tecnol. 2014; 25(2), 141-150.

Kere M, Siriboon C, Lo N-W, Nguyen NT, Ju J-C. Ascorbic acid improves the developmental competence of porcine oocytes after parthenogenetic activation and somatic cell nuclear transplantation. J Reprod Dev. 2013;59(1):78–84.

Sovernigo T, Adona P, Monzani P, Guemra S, Barros F, Lopes F, et al. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reprod Domest Anim. 2017; 52:561–569.

Hu J, Cheng D, Gao X, Bao J, Ma X, Wang H. Vitamin C Enhances the In vitro Development of Porcine Pre-implantation Embryos by Reducing Oxidative Stress. Reprod Domest Anim. 2012;47(6):873–9.

Castillo-Martín M, Yeste M, Soler A, Morató R, Bonet S. Addition of l-ascorbic acid to culture and vitrification media of IVF porcine blastocysts improves survival and reduces HSPA1A levels of vitrified embryos. Reprod Fertil Dev. 2015;27(7):1115–23.

Castillo-Martín M, Bonet S, Morató R, Yeste M. Comparative effects of adding β-mercaptoethanol or L-ascorbic acid to culture or vitrification-warming media on IVF porcine embryos. Vol. 26, Reproduction, Fertility and Development. 2014. p. 875–82.

Dimitrios B. Sources of natural phenolic antioxidants. Trends Food Sci Technol. 2006;17(9):505–12.

Wright JS, Johnson ER, DiLabio G a. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc. 2001;123(6):1173–83.

Negi G, Kumar A, Kaundal RK, Gulati A, Sharma SS. Functional and biochemical evidence indicating beneficial effect of Melatonin and Nicotinamide alone and in combination in experimental diabetic neuropathy. Neuropharmacology. 2010;58(3):585–92.

Kumar A, Sharma SS. NF-kB inhibitory action of resveratrol: A probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem Biophys Res Commun 2010;394(2):360–5.

Wang ZG, Yu SD, Xu ZR. Effect of supplementation of green tea polyphenols on the developmental competence of bovine oocytes in vitro. Braz J Med Biol Res. 2007;40(8):1079–85.

You J, Kim J, Lim J, Lee E. Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology. 2010;74(5):777–85.

Sakatani M, Suda I, Oki T, Kobayashi S, Kobayashi S, Takahashi M. Effects of Purple Sweet Potato Anthocyanins on Development and Intracellular Redox Status of Bovine Preimplantation Embryos Exposed to Heat Shock. J Reprod Dev. 2007;53(3):605–14.

Gambini J, Inglés M, Olaso G, Lopez-Grueso R, Bonet-Costa V, Gimeno-Mallench L, et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid Med Cell Longev. 2015; 2015:837042.

Konyalioglu S, Armagan G, Yalcin A, Atalayin C, Dagci T. Effects of resveratrol on hydrogen peroxide-induced oxidative stress in embryonic neural stem cells * ●. NEURAL Regen Res. 2013;8(6):485–95.

Xu Q, Si L-Y. Resveratrol role in cardiovascular and metabolic health and potential mechanisms of action. Nutr Res. 2012;32(9):648–58.

Donnelly LE, Newton R, Kennedy GE, Fenwick PS, Leung RHF, Ito K, et al. Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am J Physiol Lung Cell Mol Physiol. 2004;287(4): L774–83.

Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem. 2005;16(8):449–66.

Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109–22.

Fischer-Posovszky P, Kukulus V, Tews D, Unterkircher T, Debatin KM, Fulda S, et al. Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am J Clin Nutr. 2010;92(1):5–15.

Park CE, Kim M-J, Lee JH, Min B-I, Bae H, Choe W, et al. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp Mol Med. 2007;39(2):222–9.

Kwak S-S, Cheong SA, Jeon Y, Lee E, Choi KC, Jeung EB, et al. The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology. 2012;78(1):86–101.

Wang F, Tian X, Zhang L, He C, Ji P, Li Y, et al. Beneficial effect of resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertil Steril [Internet]. 2014;101(2):577–86.

Torres V, Urrego R, Echeverry JJ, Lopez A. 181 Resveratrol during in vitro maturation improves the quality of bovine oocyte and enhances embryonic. Reprod Fertil Dev. 2016;29(December 2016):199–199.

Kordowitzki P, Bernal SM, Herrmann D, Aldag P, Niemann H. Resveratrol Supplementation During In Vitro Maturation and Fertilisation Enhances Developmental Competence of Bovine Oocytes. Reprod Fertil Dev. 2016;28(2):230.

Mukherjee A, Malik H, Saha AP, Dubey A, Singhal DK, Boateng S, et al. Resveratrol treatment during goat oocytes maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. J Assist Reprod Genet. 2014;31(2):229–39.

Lee K, Wang C, Chaille JM, Machaty Z. Effect of resveratrol on the development of porcine embryos produced in vitro. J Reprod Dev. 2010;56(3):330–5.

Salzano A., Albero G, Zullo G, Neglia G, Abdel-Wahab A., Bifulco G, et al. Effect of resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Anim Reprod Sci. 2014;151(3–4):91–6.

Giaretta E, Spinaci M, Bucci D, Tamanini C, Galeati G. Effects of resveratrol on vitrified porcine oocytes. Oxid Med Cell Longev. 2013;2013.

Price NL, Gomes AP, Ling AJY, Duarte F V, Martin-Montalvo A, North BJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90.

Kulkarni SS, Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta. 2015; 1852:1114–23.

Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab. 2014;25(3):138–45.

Park S, Ahmad F, Philp A, Baar K, Williams T, Ke H, et al. Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases. Cell. 2012;148(3):421–33.

Mayes M a, Sirard M-A. Effect of type 3 and type 4 phosphodiesterase inhibitors on the maintenance of bovine oocytes in meiotic arrest. Biol Reprod. 2002 Jan;66(1):180–4.

Thomas RE, Thompson JG, Armstrong DT, Gilchrist RB. Effect of specific phosphodiesterase isoenzyme inhibitors during in vitro maturation of bovine oocytes on meiotic and developmental capacity. Biol Reprod. 2004;71(4):1142–9.

Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65(1):126–36.

Torner H, Ghanem N, Ambros C, Hölker M, Tomek W, Phatsara C, et al. Molecular and subcellular characterisation of oocytes screened for their developmental competence based on glucose-6-phosphate dehydrogenase activity. Reproduction. 2008;135(2):197–212.

Lequarre AS, Traverso JM, Marchandise J, Donnay I. Poly(A) RNA is reduced by half during bovine oocyte maturation but increases when meiotic arrest is maintained with CDK inhibitors. Biol Reprod. 2004;71(2):425–31.

Bilodeau-Goeseels S, Panich P. Effects of oocyte quality on development and transcriptional activity in early bovine embryos. Anim Reprod Sci. 2002;71(3–4):143–55.

Tong Z-B, Bondy C a, Zhou J, Nelson LM. A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development. Hum Reprod. 2002;17(4):903–11.

Pennetier S, Perreau C, Uzbekova S, Thélie A, Delaleu B, Mermillod P, et al. MATER protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine. BMC Dev Biol. 2006; 6:26.

Urrego R, Herrera-Puerta E, Chavarria N a., Camargo O, Wrenzycki C, Rodriguez-Osorio N. Follicular progesterone concentrations and messenger RNA expression of MATER and OCT-4 in immature bovine oocytes as predictors of developmental competence. Theriogenology. 2015;83(7):1179–87.

Habermann F a., Wuensch A., Sinowatz F, Wolf E. Reporter genes for embryogenesis research in livestock species. Theriogenology. 2007;68(SUPPL. 1):116–24.

McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19(12):2869–74.

Lopes AS, Wrenzycki C, Ramsing NB, Herrmann D, Niemann H, Løvendahl P, et al. Respiration rates correlate with mRNA expression of G6PD and GLUT1 genes in individual bovine in vitro-produced blastocysts. Theriogenology. 2007;68(2):223–36.

Wrenzycki C, Wells D, Herrmann D, Miller A, Oliver J, Tervit R, et al. Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol Reprod. 2001;65(1):309–17.

Rizos D, Lonergan P, Boland MP, Arroyo-García R, Pintado B, de la Fuente J, et al. Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol Reprod. 2002;66(3):589–95.

Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle. Epigenetics. 2014;9(6):803–15.

Lee S, Park EJ, Moon JH, Kim SJ, Song K, Lee BC. Sequential treatment with resveratrol-trolox improves development of porcine embryos derived from parthenogenetic activation and somatic cell nuclear transfer. Theriogenology. 2016;84(1):145–54.

Castillo-Martín M, Bonet S, Morató R, Yeste M. Supplementing culture and vitrification-warming media with l-ascorbic acid enhances survival rates and redox status of IVP porcine blastocysts via induction of GPX1 and SOD1 expression. Cryobiology. 2014;68(3):451–8.

Cebrian-Serrano A, Salvador I, García-Roselló E, Pericuesta E, Pérez-Cerezales S, Gutierrez-Adán A, et al. Effect of the bovine oviductal fluid on in vitro fertilization, development and gene expression of in vitro-produced bovine blastocysts. Reprod Domest Anim. 2013;48(2):331–8.

Huang Y, Tang X, Xie W, Zhou Y, Li D, Zhou Y, et al. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos. Biochem Biophys Res Commun. 2011;411(2):397–401.

Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol. 2010;17(6):679–87.

Heinzmann J, Hansmann T, Herrmann D, Wrenzycki C, Zechner U, Haaf T, et al. Epigenetic profile of developmentally important genes in bovine oocytes. Mol Reprod Dev. 2011;78(3):188–201.

De Castro LS, De Assis PM, Siqueira AFP, Hamilton TRS, Mendes CM, Losano JDA, et al. Sperm oxidative stress is detrimental to embryo development: A dose-dependent study model and a new and more sensitive oxidative status evaluation. Oxid Med Cell Longev. 2016;2016.

Lane M, McPherson NO, Fullston T, Spillane M, Sandeman L, Kang WX, et al. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring. PLoS One. 2014;9(7):1–9.

Publicado

17.06.2019

Cómo citar

Torres-Osorio, V., Urrego, R., Echeverri Zuluaga, J. J., & López-Herrera, A. (2019). Estrés oxidativo y el uso de antioxidantes en la producción in vitro de embriones mamíferos. Revisión. Revista Mexicana De Ciencias Pecuarias, 10(2), 433–459. https://doi.org/10.22319/rmcp.v10i2.4652
Metrics
Vistas/Descargas
  • Resumen
    1090
  • PDF
    584
  • PDF
    300
  • Texto Completo
    702

Número

Sección

Revisión de literatura

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.