Composición química del rastrojo de tres cultivares de maíz esterilizados y colonizados por micelio de Ganoderma lucidum

Autores/as

  • Liz Sarahy Pérez-Martell Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla No. 205, Santiago Momoxpan, 72760, San Pedro Cholula, Puebla, México.
  • Juan De Dios Guerrero-Rodríguez Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla No. 205, Santiago Momoxpan, 72760, San Pedro Cholula, Puebla, México. http://orcid.org/0000-0001-9274-0433
  • Daniel Claudio Martínez-Carrera Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla No. 205, Santiago Momoxpan, 72760, San Pedro Cholula, Puebla, México. http://orcid.org/0000-0003-3878-1802
  • Javier Francisco Enriquez-Quiroz Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Campo Experimental La Posta, Km. 22.5 Carretera Federal Veracruz-Córdoba. 94277, Medellín, Veracruz, México. http://orcid.org/0000-0001-5472-9356
  • Efrain Pérez-Ramírez Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla No. 205, Santiago Momoxpan, 72760, San Pedro Cholula, Puebla, México. http://orcid.org/0000-0003-3093-6224
  • Benito Ramírez-Valverde Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla No. 205, Santiago Momoxpan, 72760, San Pedro Cholula, Puebla, México. http://orcid.org/0000-0001-5472-9356

DOI:

https://doi.org/10.22319/rmcp.v14i2.6003

Palabras clave:

Digestibilidad, Hongo pudrición blanca, Maíces criollos, Maíces híbridos

Resumen

/*/Se evaluó la calidad nutritiva del rastrojo de dos cultivares criollos de maíz y un híbrido, colonizados por micelio de Ganoderma lucidum. El diseño experimental fue completamente al azar con arreglo factorial 3x4 con un tratamiento adicional y cuatro repeticiones. Cada cultivar tuvo rastrojo colonizado por el hongo hasta los 15 días, rastrojo en su estado natural (sin tratar), a tiempo cero después de la esterilización, a 15 días después de la esterilización y el micelio puro (adicional). Se determinó digestibilidad in vitro (DIVMS), fibra detergente neutro (FDN) y ácido (FDA), lignina y proteína cruda (PC). Los cultivares difirieron (P<0.0001) en digestibilidad, el criollo A presentó valores mayores. Los rastrojos colonizados tuvieron menor (P<0.05) digestibilidad; los rastrojos sin tratar tuvieron valores medios y los esterilizados fueron los más digestibles. La concentración de FDN, FDA, lignina, y PC difirió (P<0.0001) en los cultivares y las condiciones del rastrojo (P<0.0001). El criollo A tuvo menos FDN que los otros cultivares. Los rastrojos en su forma natural tuvieron menos FDN que los esterilizados y los colonizados. En la FDA los rastrojos en su forma natural tuvieron concentración baja, los esterilizados una concentración media y los colonizados la concentración mayor, situación que fue similar para lignina. En PC los cultivares fueron diferentes (P<0.0001), siendo los rastrojos colonizados los que tuvieron valores mayores (P<0.05). En conclusión, la colonización del rastrojo por el micelio de Ganoderma lucidum no aumentó la digestibilidad a los 15 días de colonización, lo que mejoró ligeramente fue la concentración de proteína cruda.

Descargas

Biografía del autor/a

Liz Sarahy Pérez-Martell, Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla No. 205, Santiago Momoxpan, 72760, San Pedro Cholula, Puebla, México.

Estudiante de Doctorado en Ciencias

Juan De Dios Guerrero-Rodríguez, Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla No. 205, Santiago Momoxpan, 72760, San Pedro Cholula, Puebla, México.

Profesor Investigador Titular, Ph. D.

Daniel Claudio Martínez-Carrera, Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla No. 205, Santiago Momoxpan, 72760, San Pedro Cholula, Puebla, México.

Profesor Investigador Titular, Ph. D.

Efrain Pérez-Ramírez, Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla No. 205, Santiago Momoxpan, 72760, San Pedro Cholula, Puebla, México.

Profesor Investigador Asociado Ph. D.

Benito Ramírez-Valverde, Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla No. 205, Santiago Momoxpan, 72760, San Pedro Cholula, Puebla, México.

Profesor Investigador Titular. Ph. D.

Citas

Dejene M, Divon RM, Walsh KB, McNeill D, Seyoum S, Duncan AJ. High-cut harvesting of maize stover and genotype choice can provide improved feed for ruminants and stubble for conservation agriculture. Agron J 2021;114(1):187–200.

Arora D, Sharma R. Enhancement in in vitro digestibility of wheat straw obtained from different geographical regions during solid state fermentation by white rot fungi. BioResources 2009;4(3):909-920.

Salmones D, Mata G, Waliszewski K. Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation. Bioresource Technol 2005;96(5):537-544.

Tao L, Zhang L, Tu Y, Zhang F, Si W, Ma T, et al. Improving the in situ ruminal degradability of maize stalk using fungal inoculants in dorper × thin-tailed Han crossbred ewes. Small Ruminant Res 2016;144:119-125.

He Y, Dijkstra J, Sonnenberg A, Mouthier T, Kabel M, Hendriks W, et al. The nutritional value of the lower maize stem cannot be improved by ensiling nor by a fungal treatment. Anim Feed Sci Tech 2019;247:92-102.

Tuyen V, Phuong H, Cone J, Baars J, Sonnenberg A, Hendriks W. Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresource Technol 2013;129:256-263.

Atuhaire A, Kabi F, Okello S, Mugerwa S. Optimizing bio-physical conditions and pre-treatment options for breaking lignin barrier of maize stover feed using white rot fungi. Anim Nutr 2016;2(4):361-369.

Zhou S, Zhang J, Ma F, Tang C, Tang Q, Zhang X. Investigation of lignocellulolytic enzymes during different growth phases of Ganoderma lucidum strain G0119 using genomic, transcriptomic and secretomic analyses. Plos One 2018;13(5):1-20.

Evsenko M, Shashkov A, Avtonomova A, Krasnopolskaya L, Usov A. Polysaccharides of basidiomycetes. Alkali-Soluble polysaccharides from the mycelium of white rot fungus Ganoderma lucidum (Curt.: Fr.) P. Karst. Biochemistry (Mosc.) 2009;74(5):533-542.

Zhou H, Liu G, Huang F, Wu X, Yang H. Improved production, purification and bioactivity of a polysaccharide from submerged cultured Ganoderma lucidum. Arch Pharm Res 2014;37(12):1530-1537.

Hu Y, Ahmed S, Li J, Luo B, Gao Z, Zhang Q, et al. Improved ganoderic acids production in Ganoderma lucidum by wood decaying components. Scientific Reports 2017;7(46623):1-10.

Ma Y, He H, Wu J, Wang C, Chao K, Huang Q. Assessment of polysaccharides from mycelia of genus Ganoderma by Mid-Infrared and Near-Infrared Spectroscopy. Sci Rep 2017;8(10):1-10.

Mesa N, Ospina S, Escobar D, Rojas D, Zapata P, Ossa C. Isolation of chitosan from Ganoderma lucidum mushroom for biomedical applications. J Mater Science Mater Med 2015;26(135):1-9.

van Kuijk S, Sonnenberg A, Baars J, Hendriks W, Cone J. Fungal treated lignocellulosic biomass as ruminant feed ingredient. Biotechnol Adv 2015;33(1):191-202.

Tirado-González DN, Jáuregui-Rincón J, Tirado-Estrada GG, Martínez-Hernández PA, Guevara-Luna F, Miranda-Romero LA, Production of cellulases and xylanases by white-rot fungi cultured in corn stover media for ruminant feed applications. Anim Feed Sci Tech 2016;221:147-156.

ANKOM Technology. Operator´s Manual ANKOM 200/220 Fiber analyzer. ANKOM Technology: Macedon, New York, USA. 2017.

Jones D, Hayward M. The effect of pepsin pretreatment of herbage on the prediction of dry matter digestibility from solubility in fungal cellulase solution. J Sci Food Agric 1975;26:711-718.

Clarke T, Flin PC, McGowan AA. Low cost pepsin-cellulase assays for prediction of digestibility of herbage. Grass Forage Sci 1982;37(2):147-150.

A.O.A.C. Association of Official Analytical Chemists. Official Methods of Analysis. 12th edition. A.O.A.C. Washington DC. USA 1975.

Federer, W. Experimental design: theory and application. 6th ed. New York. Macmillan. Oxford & IBH: 1979;544.

Statistical Analysis System (SAS). User’s Guide. Statistics, version 9.0. SAS Institute Inc. Cary, North Caroline, USA 2002.

Chen X, Xu D, Liu Z, Yu T, Mei X, Cai Y. Identification of QTL for leaf angle and leaf space above ear position across different environments and generations in maize (Zea mays). Euphytica 2015;204(2):395-405.

Perez R, Fournier C, Cabrera-Bosquet L, Artzet S, Pradal C, Brichet N, et al. Changes in the vertical distribution of leaf area enhanced light interception efficiency in maize over generations of selection. Plant Cell Environ 2019;42:2105-2119.

Ford D, Cocke A, Horton L, Fellner M, Van Volkenburgh. Estimation, variation and importance of leaf curvature in Zea mays hybrids. Agr Forest Meteorol 2018;148(10):1598-1610.

Wolf DP, Coors JG, Albrecht KA, Undersander DJ, Carter PR. Forage quality of maize genotypes selected for extreme fiber concentrations. Crop Sci 1993;33:1353-1359.

Narasyanaswami N, Deehran P, Verma S, Kumar S. Biological pretreatment of lignocellulosic biomass for enzymatic saccharification. In: Fang Z, editor. Pretreatment techniques for biofuels and biorefineries, green energy and technology. Berlin Heildelberg: Springer-Verlag; 2013:3-34.

Karunanandaa K, Varga GA. Colonization of crop residues by white-rot fungi: cell wall monosaccharides, phenolic acids, ruminal fermentation characteristics and digestibility of cell wall fiber components in vitro. Anim Feed Sci Tech 1996;63:273-288.

Luna MP, Leal-Lara H, García-Pérez Á, Corona L, Romero-Pérez A, Márquez-Mota CC. Evaluation of 21 fungal strains as pretreat¬ment of corn stover: chemical composition and in vitro digestibility. J Animal Sci 2019;97(Suppl S3):444.

Asgher M, Shahid M, Kamal S, Iqbal HMN. Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J Mol Catal B: Enzym 2014;101:56-66.

Zhao S, Li G, Zheng N, Wang J, Yu Z. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization. Bioresource Technol 2018;253:244-251.

Madigan M, Martinko J, Stahl D, Clark D. Brock biology of microorganisms. 13th ed. California, USA: Prentice Hall International; 2012.

Albertó E. Cultivo intensivo de los hongos comestibles: cómo cultivar champiñones, gírgolas, shiitake y otras especies. 1a ed. Buenos Aires: Hemisferio Sur; 2008.

Stölzer S, Grabbe K. Mechanisms of substrate selectivity in the cultivation of edible fungi. Mushroom Sci 1991;13:141-145.

Paterson R. Ganoderma A therapeutic fungal biofactory. J Phytochem 2006;67(18):1985-2001.

You Y, Lin Z. Protective effects of Ganoderma lucidum polysaccharides peptide on injury of macrophages induced by reactive oxygen species. Acta Pharmacol Sin 2000;23(9):787-791.

;23(9):787-791.

Publicado

03.04.2023

Cómo citar

Pérez-Martell, L. S., Guerrero-Rodríguez, J. D. D., Martínez-Carrera, D. C., Enriquez-Quiroz, J. F., Pérez-Ramírez, E., & Ramírez-Valverde, B. (2023). Composición química del rastrojo de tres cultivares de maíz esterilizados y colonizados por micelio de Ganoderma lucidum. Revista Mexicana De Ciencias Pecuarias, 14(2), 349–365. https://doi.org/10.22319/rmcp.v14i2.6003
Metrics
Vistas/Descargas
  • Resumen
    906
  • PDF
    312
  • PDF
    265
  • Texto completo
    430

Número

Sección

Artículos

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a