Detection of rabies virus in organs unrelated to the central nervous system of experimentally-inoculated vampire bats
DOI:
https://doi.org/10.22319/rmcp.v9i3.4247Palabras clave:
Desmodus rotundus, Pathogenesis, Rabies, Vampire bat, Zoonosis.Resumen
The aim of this research was to detect rabies virus in peripheral tissues in captive vampires. Vampire bats were inoculated with 106 MICLD50 of homologous rabies virus. Bats displayed clinical signs of rabies beginning on d 8 until the 19th d post-inoculation (pi). Rabies virus antigens were found in the brain of all rabid bats. Viral RNA was detected in brain, salivary gland and tongue tissue by RT-PCR and nested PCR (nPCR). Viral genome was also detected in organs unrelated to the central nervous system. Rabies virus was not detected in saliva nor documented from any tissues without occurrence of viral antigens in the brain. Host humoral response was most pronounced via the induction of viral neutralizing antibodies (VNA) from d 8 to 20 pi, having a peak at d 14 with 0.9 IU. Antibody levels were variable, but tended to remain high after inoculation, showing significant differences to the negative control group (P=0.001). This research is one of the few recent studies focused upon Desmodus rotundus and contributes to the basic knowledge of rabies virus pathogenesis, which is required for an understanding of perpetuation in a major viral reservoir in Latin America.
Descargas
Citas
Loza-Rubio E, Nadin-Davis SA, Morales SE. Molecular and biological properties of rabies viruses circulating in Mexican skunks: focus on P gene variation. Rev Mex Cienc Pecu 2012;3:155-170.
Delpietro HA, Marchevsky N, Simonetti E. Relative population densities and predation of the common vampire bat (Desmodus rotundus) in natural and cattle–raising areas in north–east Argentina. Prev Vet Med 1992;14:13–20.
Rico-Chávez O, Ojeda FR, Sotomayor BJ, Zambrana-Torrelio C, Loza-Rubio E, Alonso AA, Suzán G. Diversidad viral de comunidades de murciélagos en paisajes transformados de México. Vet Méx 2015;2:1-23.
Belotto A, Leanes LF, Schneider MC, Tamayo H, Correa E. Overview of rabies in the Americas. Virus Res 2005;111:5-12.
Johnson N, Aréchiga-Ceballos N, Aguilar-Setién A. Vampire bat rabies: Ecology, epidemiology and control. Viruses 2014;6:1911-1928.
Favoretto SR, Carrieri ML, Cunha EM, Aguiar EA, Silva LH, Sodre MM, Souza MC, Kotait I. Antigenic typing of Brazilian rabies virus samples isolated from animals and humans, 1989-2000. Rev Inst Med Trop Sao Paulo 2002;44:91–95.
Carneiro AJ, Franke CR, Stocker A, Dos Santos F, Ungar de Sa JE, Morales-Silva E, et al. Rabies virus RNA in naturally infected vampire bats, northeastern Brazil. Emerg Infect Dis J 2010;16:2004–2006.
Schneider MC, Romijn PC, Uieda W, Tamayo H, Da Silva DF, Belotto A, Da Silva JB, Leanes LF. Rabies transmitted by vampire bats to humans: an emerging zoonotic disease in Latin America?. Rev Pan Salud Pública 2009;25:260–269.
Jackson FR, Turmelle AS, Farino DM, Franka R, McCracken GF, Rupprecht CE. Experimental rabies virus infection of big brown bats (Eptesicus fuscus). J Wild Life Dis 2008;44:612–621.
Turmelle AS, Jackson FR, Green D, McCracken GF, Rupprecht CE. Host immunity to repeated rabies virus infection in big brown bats. J Gen Virol 2010;91:2360-2366.
Davis AD, Jarvis JA, Pouliott CE, Morgan MD, Rudd RJ. Susceptibility and pathogenesis of little brown bats (Myotis lucifugus) to heterologous and homologous rabies viruses. J Virol 2013;87:9008-9015.
Kuzmin IV, Franka R, Rupprecht CE. Experimental infection of big brown bats (Eptesicus fuscus) with West Caucasian bat virus (WCBV). Develop Biolog (Basel) 2008;131:327-37.
Davis AD, Jarvis JA, Pouliott C, Rudd RJ. Rabies virus infection in Eptesicus fuscus bats born in captivity (naïve bats). PLOS One 2013b;8:e64808.
Freuling C, Vos A, Johnson N, Kaipf I, Denzinger A, Neubert L, Mansfield K, Hicks D, Nuñez A, Tordo N, Rupprecht CE, Fooks AR, Müller T. Experimental infection of serotine bats (Eptesicus serotinus) with European bat lyssavirus type 1a. J Gen Virol 2009;90:2493-502.
Fooks AR, Johnson N, Müller T, Vos A, Mansfield K, Hicks D, et al. Detection of high levels of European bat lyssavirus type-1 viral RNA in the thyroid gland of experimentally-infected Eptesicus fuscus bats. Zoo Pub Health 2009;56:270-277.
Franka R, Johnson N, Müller T, Vos A, Neubert L, Freuling C, Rupprecht CE, Fooks AR. Susceptibility of North American big brown bats (Eptesicus fuscus) to infection with European bat lyssavirus type 1. J Gen Virol 2008;89:1998-2010.
Aparecida MC, Souza M, Figueiredo A, Nassar A, Cortez A, et al. Experimental of vampire bats Desmodus rotundus (E. Geoffroy) maintained in captivity by feeding defibrinated blood added with rabies virus. Brazilian J Vet Res Anim Sci 2009;46:92-100.
Aguilar-Setién A, Loza-Rubio E, Salas-Rojas M, Brisseau N, Cliquet F, Pastoret PP, et al. Salivary excretion of rabies virus in healthy vampire bats. Epidemiol Infect 2005;133:517-522.
Almeida MF, Martorelli LFA, Aires CC, Sallum PC, Durigon EL, Massad E. Experimental rabies infection in haematophagous bats Desmodus rotundus. Epidemiol Infect 2005;133:523-527.
Moreno JA, Baer GM. Experimental rabies in the vampire bat. The American J Trop Med Hyg 1980;29:254-259.
Norma Oficial Mexicana NOM-062-ZOO-1999. 1999. Especificaciones Técnicas para la producción, cuidado y uso de los animales de laboratorio, www.senasica.gob.mx/?doc=743. Consultado 15 Nov, 2015.
Norma Oficial Mexicana NOM-033-ZOO-1995. 1996. Sacrificio humanitario de los animales domésticos y silvestres, www.senasica.gob.mx/?doc=529. Consultado 15 Nov. 2015.
Cuevas-Romero S, Colmenares VG, Batalla CD, Hernández BE. Selección de un virus rábico de origen vampiro para utilizarse como cepa de desafío en bovino. Vet Méx 1989;20:271-275.
Koprowski H. The mouse inoculation test. In: Meslin FX, et al. editors. Laboratory techniques in rabies. 4th ed. Geneva, Switzerland: WHO; 1996:80–87.
Loza-Rubio E, Rojas-Anaya E, Banda-Ruiz VM, Nadin-Davis SA, Cortez-Garcia B. Detection of multiple strains of rabies virus RNA using primers designed to target Mexican vampire bat variants. Epidemiol Infect 2005;133:927-934.
Dean DJ, Abelseth MK, Atanasiu W. The fluorescent antibody technique in rabies. In: Meslin FX, et al. editors. Laboratory techniques in rabies. 4th ed. Geneva, Switzerland: WHO; 1996:88–95.
Smith JS, Yager PA, Baer GM. A rapid fluorescent focus inhibition test (RFFIT) for determining rabies virus-neutralizing antibody. In: Meslin FX, et al. editors. Laboratory techniques in rabies. 4th ed. Geneva, Switzerland: WHO; 1996:181–191.
Johnson N, Vos A, Neubert L, Freuling C, Mansfield KL, Kaipf I, et al. Experimental study of European bat lyssavirus type-2 infection in Daubenton´s bats (Myotis daubentonii). J Gen Virol 2008;89:2662-2672.
Aguayo CM, Lora ME. Como hacer “paso a paso” un Análisis de supervivencia con SPSS para Windows. Fabis 2007;0702006:1-11.
Gilbert AT, Fooks AR, Hayman DT, Horton DL, Müller T, Plowright R, et al. Deciphering serology to understand the ecology of infectious diseases in wildlife. EcoHealth 2013;10:298-313.
Mani RS, Dovih DP, Ashwini Ma, Chattopadhyay B, Harsha PK, Garg KM, et al. Serological evidence of Lyssavirus infection among bats in Nagaland, a North-Eastern State in India. Epidemiol Infect 2017;145:1635-1641.
O’Shea TJ, Shankar V, Bowen RA, Rupprecht CE, Wimsatt JH. Do bats acquire immunity to rabies? Evidence from the field. Bat Research News. 2003;44:161.
Aguilar-Sétien A, Brochier B, Tordo N, De Paz O, Desmettre P, Péharpré D, Pastoret PP. Experimental rabies infection and oral vaccination in vampire bats (Desmodous rotundus). Vaccine 1998;16:1122-1126.
Cowled C, Stewart CR, Likic VA, Friedländer MR, Tachedjian M, Jenkins KA, et al. Characterization of novel microRNAs in the Black flying fox (Pteropus alecto) by deep sequencing. BMC Genomics 2014;15:682.
He X, Korytař T, Schatz J, Freuling CM, Müller T, Köllner B. Anti-lyssaviral activity of interferons κ and ω from the serotine bat, Eptesicus serotinus. J Virol 2014;88:5444-5454.
Descargas
Publicado
Cómo citar
-
Resumen1685
-
PDF 710
-
XML 286
Número
Sección
Licencia
Los autores/as que publiquen en la Revista Mexicana de Ciencias Pecuarias aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Pecuarias reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.