Principales componentes bioactivos y propiedades terapéuticas del veneno de abeja (Apis mellifera L.). Revisión

Autores/as

  • Karla Itzél Alcalá-Escamilla Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal. https://orcid.org/0000-0003-3036-1782
  • Yolanda Beatriz Moguel-Ordóñez Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro de Investigación Regional Sureste. Campo Experimental Mocochá https://orcid.org/0000-0003-4805-4035

DOI:

https://doi.org/10.22319/rmcp.v15i1.6572

Palabras clave:

Abejas melíferas, Compuestos bioactivos, Veneno

Resumen

El veneno de abeja melífera (VAM) es una secreción producida por las hembras de Apis mellifera L y es su mecanismo de defensa especializado para protección de la colonia. Entre los componentes químicos, se encuentran algunos compuestos bioactivos a los que se les atribuyen diversas propiedades biológicas. Ha sido utilizado con fines terapéuticos de manera complementaria o alternativa a los métodos tradicionales para diversas afecciones de la salud; sin embargo, la aplicación del VAM siempre implica un riesgo para el individuo debido a que existe la posibilidad de presentar efectos desfavorables. Actualmente los trabajos de investigación relacionado con VAM son incipientes; debido a esto, el presente trabajo presenta una revisión de los trabajos relacionados con la composición química, compuestos bioactivos y sus propiedades biológicas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Atlas Nacional de las abejas y derivados apícolas (s.f.). La apicultura como actividad económica. Secretaría de Agricultura y Desarrollo Rural. 2023. https://atlas-abejas.agricultura.gob.mx/cap2.html

SIAP. Servicio de Información Agroalimentaria y Pesquera. Información. Datos Abiertos. Estadística de producción ganadera. 2023. http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php

Asis M. Propóleo de origen Apis para primeros auxilios en veterinaria [Trabajo en extenso]. 27° Congreso Internacional de Actualización Apícola. Ciudad de México, México 2021.

COFEPRIS. 22 de marzo 2023. Aviso de Riesgo sobre el uso y consumo de apitoxina. https://www.gob.mx/cms/uploads/attachment/file/810962/Aviso_de_Riesgo_Apitoxina_22032023.pdf

Zlotkin E. The role of Hymenopterous venoms in nature. In: Mizrahi A, Lensky Y. editors. Bee products. Springer, Boston, MA. 1997:185-201.

Ali M. Studies on bee venom and its medical uses. Int J Adv Res Technol 2012;1(2):1-15.

Faux CM. Honey bee anatomy. In: Kane TR, Faux CM editors. Honey bee medicine for the veterinary parctitioner. Wiley Blackwell. 2021:33-40.

Roodt AR, Salomón OD, Orduna TA, Robles OLE, Paniagua SJF, Alargón CA. Envenenamiento por picaduras de abeja. Gac Med Mex 2005;141(3):215-222.

Bachmayer H, Kreil G, Suchanek G. Synthesis of promelittin and melittin in the venom gland of queen and worker bees: Patterns observed during maturation. J Insect Physiol 1972;18:1515-1521.

Okwesili FCN, Ogugua VN. Therapeutic effect of honey bee venom. J Phram Chem Biol Sci 2016;4(1):48-53.

Pucca MB, Cerni FA, Oliveira IS, Jenkins TP, Argemi L, Sorensen CV, et al. Bee update: Current knowledge on bee venom and bee envenoming therapy. Front Immunol 2019;10:2090.

Abdela N, Jilo K. Bee venom and its therapeutic values: A review. Adv Life Sci Technol 2016;44:18-22.

Kim W. Bee venom and its sub-components: Characterization, pharmacology, and therapeutics. Toxins 2021;13(3):191.

Carpena M, Nuñez-Estevez B, Soria-Lopez A, Simal-Gandara J. Bee venom: an updating review of its bioactive molecules and its health applications. Nutrients 2020;12(11):3360.

Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, et al. Pharmaceutical prospects of bee products: special focus on anticancer, antibacterial, antiviral and antiparasitic properties. Antibiotics 2021;10(7):82.

Schmidt JO, Morgan ED, Oldham NJ, Do Nascimento RR. (Z)-11-Eicosen-1-ol, A major component of Apis cerana Venom. J Chem Ecol 1997;23(8):1929-1939.

Abd El-Wahed AA, Khalifa SAM, Sheikh BY, Farag MA, Saeed A, Larik FA, et al. Chapter 13. Bee Venom Composition: From chemistry to biological activity. In: Atta-ur-Rahman editor. Studies in natural products chemistry. Elsevier. 2019;60:459-484.

Wehbe R, Frangieh J, Rima M, El Obeid D, Sabatier J, Fajloun Z. Bee venom: overview of main compounds and bioactivities for therapeutic interests. Molecules 2019;24:2997.

Rady I, Siddiqui IA, Rady M, Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett 2017;402:16-31.

Merck. (s.f.). Melittin from honey bee venom. Merck-Sigma Aldrich. https://www.sigmaaldrich.com/MX/es/product/sigma/m2272. Accessed Oct 2, 2023

Socarras KM, Theophilus PA, Torres JP, Gupta K, Sapi E. Antimicrobial activity of bee venom and melittin against Borrelia burgdorferi. Antibiotics 2017;6(4):31.

Marques PAF, Albano M, Bérgamo AFC, Murbach TABF, Furlanetto A, Mores RVL, et al. Influence of apitoxin and melittin from Apis mellifera bee on Staphylococcus aureus strains. Microb Pathog 2020;141:104011.

Hood JL, Jallouk AP, Campbell N, Ratner L, Wickline SA. Cytolytic nanoparticles attenuate HIV-1 infectivity. Antivir Ther 2013;18:95-103.

Lee JE, Shah VK, Lee EJ, Oh MS, Choi JJ. Melittin – A bee venom component – Enhances muscle regenation factors expression in a mouse model of skeletal muscle contusion. J Pharmacol Sci 2019;140:26-32.

Lee G, Bae H. Bee venom phospolipase A2: Yesterday´s enemy becomes today´s friend. Toxins 2016;8(2):48.

Hossen MS, Shapla UM, Gan SH, Khalil MI. Impact of bee venom enzymes on diseases and immune response. Molecules 2016;22(1):25.

Baek H, Jang HI, Jeon HN, Bae H. Comparison of administration routes on the protective effects of bee venom phospholipase A2 in a mouse model of Parkinson´s disease. Front Aging Neurosci 2018;10:179.

Chung ES, Lee G, Lee C, Ye M, Chung HS, Kim H, et al. Bee venom phospholipase A2, a novel Foxp3+ regulatory T cell inducer, protects dopaminergic neurons by modulating neuroinflammatory responses in a mouse model of Parkinson’s disease. J Immunol 2015;195(10):4853-4860.

Prutz T, Ramoner P, Gander H, Rahm A, Bartsch G, Thurnher M. Antitumor action and inmune activation through cooperation of bee venom secretory phospholipase A2 and phosphatidylinositol-(3,4)-bisphosphate. Cancer Inmunol Inmunother 2006;55:1374-1383.

Boutrin MCF, Foster HA, Pentreath VW. The effects of bee (Apis mellifera) venom phospholipase A2 on Trypanosoma brucei brucei and enterobacteria. Exp Parasitol 2008;119:246-251.

Silva LFCM, Ramos ERP, Ambiel CR, Correia-de-Sá P, Alves-Do-Prado W. Apamin reduces neuromuscular transmission by activating inhibitory muscarinic M2 receptors on motor nerve terminals. Eur J Pharmacol 2010;629:239-243.

Alvarez-Fischer D, Noelker C, Vulinović F, Grünewald A, Chevarin C, Klein C, et al. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model. PLoS One 2013;8(4):e61700.

Lee YM, Cho SN, Son E, Song CH, Kim DS. Apamin from bee venom suppresses inflammation in a murine model of gouty arthritis. J Ethnopharmacol 2020;257:112860.

Kim JY, Leem J, Park KK. Antioxidative, antiapoptotic, and anti-inflammatory effects of apamin in murine model of lipopolysaccharide-induced acute kidney injury. Molecules 2020;25(23):5717.

Merck. (s.f.). Apamin. Merck-Sigma Aldrich.. https://www.sigmaaldrich.com/MX/es/product/sigma/a1289. Accessed Oct 2, 2023

Banks BEC, Dempsey CE, Vernon CA, Warner JA, Yamey J. Anti-inflammatory activity of bee venom peptide 401 (mast cell degranulating peptide) and compound 48/80 results from mast cell degranulation in vivo. Br J Pharmacol 1990;99(2):350-354.

Reza ZM, Russek S, Hsuei-Chin W, Beer B, Blume AJ. Mast cell degranulating peptide: A multi-functional neurotoxin. J Pharm Pharmacol 1990;42(7):457-461.

Gauldie J, Hanson JM, Shipolimi A, Vernon CA. The structures of some peptides from bee venom. Eur J Biochem 1978;83(2):405-410.

Lee KS, Kim BY, Yoon HJ, Choi YS, Jin BR. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. Dev Comp Immunol 2016;63:27-35.

Hou C, Guo L, Lin J, You L, Wu W. Production of antibacterial peptide from bee venom via a new strategy for heterologous expression. Mol Biol Rep 2014;41(12):8081-8091.

Mourelle D, Brigatte P, Bringanti LDB, De-Souza BM, Arcuri HA, Gomes PC, et al. Hyperalgesic and edematogenic effects of Secapin-2, a peptide isolated from africanized honeybee (Apis mellifera) venom. Peptides 2014;59:42-52.

Vlasak R, Kreil G. Nucleotide sequence of cloned cDNAs coding for preprosecapin, a major product of queen-bee venom glands. Eur J Biochem 1984;145(2):279-282.

Bordon KCF, Wiezel GA, Amorim FG, Arantes EC. Arthropod venom hyaluronidases: biochemical properties and potential applications in medicine and biotechnology. J Venom Anim Toxins Incl Trop Dis 2015;21:43.

Abdel-Monsef MM, Zidan HA, Darwish DA, Masoud HM, Helmy MS, Ibrahim MA. Biochemical isolation and characterization of hyaluronidase enzyme from venom of Egyptian honey bee Apis mellifera Lamarckii. J Apic Sci 2020;64(1):153-164.

Contreras ZE, Zuluaga SX, Casas QIC. Envenenamiento por múltiples picaduras de abejas y choque anafiláctico secundario: Descripción de un caso clínico y revisión de literatura. Acta Toxicol Argent 2008;16(2):27-32.

Zhang W, Wang X, Yang S, Niu Q, Wu L, Li Y, et al. Simultaneous quantification of five biogenic amines based on LC-MS/MS and its application in honeybee venom from different subspecies. Biomed Chromatogr 2020;34(2):e4740.

Chen J, Larivieri WR. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 2010;92(2):151-183.

Ebrahimi Y, Ramírez-Coronel AA, Al-Dhalimy AMB, Alfilm RHC, Al-Hassan M., Obaid RF, et al. Effects of honey and bee venom on human health. Casp J Environ Sci 2023;21(1):245-249.

Tekeoğlu I, Akdoğan M, Çelik I. Investigation of anti-inflamatory effects of bee venom in experimentally induced adjuvant arthritis. Reumatologia 2020;58(5): 265-271.

Da-Silva MFM, Rondon WP, Costa BFR, Da-Silva MMJM. Ultrasound wave transports apitoxin in arthritic joint. – Experimental study. Res Soc Dev 2022;11(7):e53311730386.

Kwon YB, Lee JD, Lee HJ, Han HJ, Mar WC, Kang SK, et al. Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses. Pain 2001;90(3):271-280.

Lee SH, Hong SJ, Kim SY, Yang HI, Lee JD, Choi DY, Lee DI, Lee YH. Randomized controlled double blind study of bee venom therapy on rheumatoid arthritis. J Kor Acu Mox Soc 2003;20(6):80-88.

Nascimento de Souza R, Silva FK, Alves de Medeiros M. Bee Venom acupuncture reduces interlukin-6, increases interleukin 10 and induced locomotor recovery in a model spinal cord compression. J Acupunct Meridian Stud 2017;10(3):204-210.

You CE, Moon SH, Lee KH, Kim KH, Park CW, Seo AJ, et al. Effects of emollient containing bee venom on atopic dermatitis: A double-blinded, randomized, base-controlled, multicenter study of 136 patients. Ann Dermatol 2016;28(5):593-599.

Moga MA, Dimienescu OG, Arvătescu CA. Anticancer activity of toxins from bee and snake venom-an overview on ovarian cancer. Molecules 2018;23(3):692.

Zhao J, Hu W, Zhang Z, Zhou Z, Duan J, Dong Z, et al. Bee venom protects against pancreatic cancer via inducing cell cycle arrest and apoptosis with suppression of cell migration. J Gastrointest Oncol 2022;13(2):847-858.

Sisakht M, Mashkani B, Bazi A, Ostadi H, Zare M, Avval FZ, et al. Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells. Rev Bras Pharmacog 2017;27(3):324-328.

Kwon NY, Sung SH, Sung HK, Park JK. Anticancer activity of bee venom components against breast cancer. Toxins 2022;14(7):460.

Lamas A, Arteaga V, Regal P, Vázquez B, Miranda JM, Cepeda A, et al. Antimicrobial activity of five apitoxins from Apis mellifera on two common foodborne pathogens. Antibiotics (Basel) 2020;9(7):367.

Haktanir I, Masoura M, Mantzouridou FT, Gkatzionis K. Mechanism of antimicrobial activity of honeybee (Apis mellifera) venom on Gram-negative bacteria: Escherichia coli and Pseudomonas spp. AMB Express 2021;11(1):54.

Shalaby LS, Salama AH, Shawkat SM, Fares AE, Hegazi AG. Comparison of the healing potential of propolis and bee venom on surgically induced wound in rat´s buccal mucosa. Int J Adv Res 2018;6(3):1268-1275.

Amin MA, Abdel-Raheem IT, Madkor HR. Wound healing and anti-inflammatory activities of bee venom-chitosan blend films. J Drug SCI Tech 2008;18(6):424-430.

Rosman Y, Nashef F, Cohen-Engler A, Meir-Shafrir K, Lachover-Roth I, Confino-Cohen R. Exclusive bee venom allergy: risk factors and outcome of immunotherapy. Int Arch Allergy Immunol 2019;180(2):128-134.

Antonicelli L, Bilò MB, Bonifazi F. Epidemiology of Hymenoptera allergy. Curr Opin Allergy Clin Immunol 2002;2(4):341-346.

Sturm GJ, Varga EM, Roberts G, Mosbech H, Biló MB, Akdis CA, et al. EAACI guidelines on allergen immunotherapy: Hymenoptera venom allergy. Allergy 2018;73(4):744-764.

Hizli DZ, Yücel E, Sipahi CS, Süleyman A, Özdemir C, Kara A, et al. Venom allergy and knowledge about anaphylaxis among beekeepers and their families. Allergol Immunopathol 2020;48(6):640-645.

Valderrama HR. Aspectos toxinológicos y biomédicos del veneno de las abejas Apis mellifera. Iatreia 2003;16(3):217-227.

Abdulsalam MA, Ebrahim BE, Abdulsalam AJ. Inmune thrombocytopenia after bee venom therapy: a case report. BMC Complement Altern Med 2016;16:107.

Seo YJ, Jeong YS, Park HS, Park SW, Choi JY, Jung KJ, et al. Late-Onset post-radiation lymphedema provoked by bee venom therapy: A case report. Ann Rehabil Med 2018;42(4): 626-629.

Lee HJ, Park IS, Lee JI, Kim JS. Guillain-Barré syndrome following bee venom acupuncture. Intern Med 2015;54(8):975-978.

Maltzman JS, Lee AG, Miller NR. Optic neuropathy occurring after bee and wasp sting. Ophthalmology 2000;107(1):193-195.

Huh SY, Yoo BG, Kim MJ, Kim JK, Kim KS. Cerebral infarction after honey bee venom acupuncture. J Korean Geriatr Soc 2008;12(1):50-52.

Silva GBD, Vasconcelos AG, Rocha AMT, Vasconcelos VR, Barros JN, Fujishima JS, et al. Acute kidney injury complicating bee stings - a review. Rev Inst Med Trop São Paulo 2017;59:e25.

Santhosh MSR, Viswanathan S, Kumar S. The bee sting related Wolff-Parkinson-White syndrome. J Clin Diagn Res 2012;6(9):1541-1543.

Gopinath B, Kumar G, Nayaka R, Ekka M. Kounis syndrome and atrial fibrillation after bee sting: a case report. J Family Med Prim Care 2022;11(11):7460-7462.

Yoo SA, Park HE, Kim M. A case of newly developed pemphigus foliaceus and possible association with alternative bee-venom therapy. Ann Dermatol 2021;33(5):467-469.

Barbosa AN, Ferreira RS, de Carvalho FCT, Schuelter-Trevisol F, Mendes MB, Mendonça BC, et al. Single-arm, multicenter phase I/II clinical trial for the treatment of envenomings by massive africanized honey bee stings using the unique apilic antivenom. Front Immunol 2021;12:653151.

Publicado

19.01.2024

Cómo citar

Alcalá-Escamilla, K. I., & Moguel-Ordóñez, Y. B. (2024). Principales componentes bioactivos y propiedades terapéuticas del veneno de abeja (Apis mellifera L.). Revisión. Revista Mexicana De Ciencias Pecuarias, 15(1), 230–248. https://doi.org/10.22319/rmcp.v15i1.6572
Metrics
Vistas/Descargas
  • Resumen
    794
  • PDF
    356
  • PDF
    53
  • Texto completo
    42
  • Full text
    13

Número

Sección

Revisiones bibliográficas

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a