Relación entre la resistencia a antibióticos y la producción de biofilm de aislados de Staphylococcus aureus provenientes de mastitis bovina

Autores/as

  • Jaquelina Julia Guzmán-Rodríguez Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Medicina Veterinaria y Zootecnia. https://orcid.org/0000-0001-7302-5872
  • Estefanía Salinas-Pérez Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Medicina Veterinaria y Zootecnia. https://orcid.org/0000-0003-0226-5275
  • Fabiola León-Galván Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Alimentos. México. https://orcid.org/0000-0002-4006-0281
  • José Eleazar Barboza-Corona Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Alimentos. México. https://orcid.org/0000-0002-0704-3076
  • Mauricio Valencia-Posadas Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Medicina Veterinaria y Zootecnia. https://orcid.org/0000-0002-5282-5392
  • Fidel Ávila-Ramos Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Medicina Veterinaria y Zootecnia. https://orcid.org/0000-0002-7766-6682
  • José Antonio Hernández-Marín Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Medicina Veterinaria y Zootecnia. https://orcid.org/0000-0002-0255-0722
  • Diana Ramírez-Sáenz Consultoría en Biotecnología, Bioingeniería y Servicios Asociados, SA de CV. México. https://orcid.org/0000-0002-6421-7407
  • Abner Josué Gutiérrez-Chávez Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Medicina Veterinaria y Zootecnia. https://orcid.org/0000-0003-1702-508X

DOI:

https://doi.org/10.22319/rmcp.v12i4.5645

Palabras clave:

antibióticos, mastitis, ADN, biofilm

Resumen

El objetivo fue analizar la relación entre el perfil de resistencia a antibióticos y la formación de biofilm de aislados de S. aureus provenientes de mastitis bovina. Se analizaron 30 aislados de S. aureus procedentes de casos de mastitis subclínica en granjas lecheras en sistemas de producción semi-intensivo y de traspatio ubicadas en los estados de Guanajuato y Michoacán, México. Se realizó un antibiograma por el método de difusión en disco Kirbi Bauer. La formación de biofilm se determinó por el método de tinción con cristal violeta. Para la evaluación de genes de resistencia a antibióticos y de formación de biofilm se obtuvo ADN genómico de una colonia para la identificación de los genes: blaZ, mecA, tetK, tetM, gyrA y gyrB, y icaA e icaD. Los resultados mostraron que el 100 % de los aislados fueron resistentes a penicilina  y dicloxacilina, seguidos  por cefotaxima  (86.6 %),  ampicilina y cefalotina (83.3 %) y ceftazidima (80.0 %), mientras que se observó un 36.6 % de resistencia a oxacilina. Se identificó que todos los aislados de S. aureus presentaron la capacidad de formar biofilm con un rango del 20 a 98 %. Se observó además que los aislados con una multirresistencia elevada presentaron una mayor formación de biofilm; estableciéndose una correlación positiva significativa. En conclusión, los aislados de S. aureus provenientes de mastitis bovina presentaron elevados niveles de resistencia a antibióticos; así como una importante capacidad formadora de biofilm, demostrando la existencia de una correlación positiva entre estos dos factores.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jaquelina Julia Guzmán-Rodríguez, Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Medicina Veterinaria y Zootecnia.

ESTANCIA POST-DOCTORAL. PROGRAMA DE MAESTRÍA Y DOCTORADO EN BIOCIENCIAS. PROGRAMA DE MAESTRÍA INTERINSTITUCIONAL EN PRODUCCIÓN PECUARIA. DIVISIÓN DE CIENCIAS DE LA VIDA. UNIVERSIDAD DE GUANAJUATO.

Estefanía Salinas-Pérez, Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Medicina Veterinaria y Zootecnia.

ESTUDIANTE DE PROGRAMA EDUCATIVO DE MEDICINA VETERINARIA Y ZOOTECNIA. DIVISIÓN DE CIENCIAS DE LA VIDA, UNIVERSIDAD DE GUANAJUATO.

Fabiola León-Galván, Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Alimentos. México.

PROFESOR-INVESTIGADOR

DEPARTAMENTO DE ALIMENTOS

DIVISIÓN DE CIENCIAS DE LA VIDA

CAMPUS IRAPUATO-SALAMANCA

UNIVERSIDAD DE GUANAJUATO

José Eleazar Barboza-Corona, Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Alimentos. México.

PROFESOR-INVESTIGADOR

DEPARTAMENTO DE ALIMENTOS

DIVISIÓN DE CIENCIAS DE LA VIDA

CAMPUS IRAPUATO-SALAMANCA

UNIVERSIDAD DE GUANAJUATO

Mauricio Valencia-Posadas, Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Medicina Veterinaria y Zootecnia.

PROFESOR-INVESTIGADOR

DEPARTAMENTO DE VETERINARIA Y ZOOTECNIA

DIVISIÓN DE CIENCIAS DE LA VIDA

CAMPUS IRAPUATO-SALAMANCA

UNIVERSIDAD DE GUANAJUATO

Fidel Ávila-Ramos, Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Medicina Veterinaria y Zootecnia.

PROFESOR-INVESTIGADOR

DEPARTAMENTO DE VETERINARIA Y ZOOTECNIA

DIVISIÓN DE CIENCIAS DE LA VIDA

CAMPUS IRAPUATO-SALAMANCA

UNIVERSIDAD DE GUANAJUATO

José Antonio Hernández-Marín, Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Medicina Veterinaria y Zootecnia.

PROFESOR-INVESTIGADOR

DEPARTAMENTO DE VETERINARIA Y ZOOTECNIA

DIVISIÓN DE CIENCIAS DE LA VIDA

CAMPUS IRAPUATO-SALAMANCA

UNIVERSIDAD DE GUANAJUATO

Diana Ramírez-Sáenz, Consultoría en Biotecnología, Bioingeniería y Servicios Asociados, SA de CV. México.

DEPARTAMENTO DE PRODUCCIÓN

COBBYSA, S. A. de C. V

Abner Josué Gutiérrez-Chávez, Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Programa de Posgrado en Biociencias. Km. 9.0 Carr. Irapuato-Silao, El Copal, Irapuato, 36821, Guanajuato, México. Universidad de Guanajuato. Campus Irapuato-Salamanca. División de Ciencias de la Vida, Departamento de Medicina Veterinaria y Zootecnia.

PROFESOR-INVESTIGADOR

DEPARTAMENTO DE VETERINARIA Y ZOOTECNIA

DIVISIÓN DE CIENCIAS DE LA VIDA

CAMPUS IRAPUATO-SALAMANCA

UNIVERSIDAD DE GUANAJUATO

Citas

SIAP. Servicio de Información Agroalimentaria y Pesquera. Boletín de Leche. México. 2018.

Smith PB. Medicina interna de grandes animales. Serrales, DC (trad.). 4ta ed. Barcelona, España: Elsevier; 2010.

Taponen S, Liski E, Heikkilä AM, Pyörälä S. Factors associated with intramammary infection in dairy cows caused by coagulase-negative Staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. J Dairy Sci 2017;100(1):493–503.

Martínez-Sigales JM. Patología y clínica bovina recopilación de clases y relatos de la experiencia práctica de un veterinario de campo. Intermedica. Buenos Aires Argentina. 2016.

Gomes F, Henriques M. Control of bovine mastitis: Old and recent therapeutic approaches. Curr Microbiol 2016;72:377–382.

Monistero V, Graber HU, Pollera C, Cremonesi P, Castiglioni B, Bottini E, Ceballos-Marquez A. et al. Staphylococcus aureus isolates from bovine mastitis in eight countries: Genotypes, detection of genes encoding different toxins and other virulence genes. Toxins 2018;10:1-22.

Dorneles EMS, Fonseca MDAM, Abreu JAP, Lage AP, Brito MAVP, Pereira CR, Brandão HM, Guimarães AS, Heinemann MB. Genetic diversity and antimicrobial resistance in Staphylococcus aureus and coagulase‐negative Staphylococcus isolates from bovine mastitis in Minas Gerais, Brazil. Microbiologyopen 2019;8:e736.

Thiran E, Di Ciccio PA, Graber HU, Zanardi E, Ianieri A, Hummerjohann J. Biofilm formation of Staphylococcus aureus dairy isolates representing different genotypes. J Dairy Sci 2018;101:1000–1012.

Raza A, Muhammad G, Sharif S, Atta A. Biofilm producing Staphylococcus aureus and bovine mastitis: A review. Mol Microbiol Res 2013;3(1):1-8.

Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 2014;4:178:1-9.

Chen Y, Liu T, Wang K, Hou Ch, Cai S, Huang Y, Du Z, et al. Baicalein Inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. Plos ONE 2016;11(4):e0153468.

Varela-Ortiz DF, Barboza-Corona JE, González-Marrero J, León-Galván MF, Valencia-Posadas M, Lechuga-Arana AA, Sánchez-Felipe CG. Antibiotic susceptibility of Staphylococcus aureus isolated from subclinical bovine mastitis cases and in vitro efficacy of bacteriophage. Vet Res Commun 2018;42:243–250.

Hudzicki J. Kirby-Bauer Disk diffusion susceptibility test protocol. Am Soc Microbiology. 2016.

CLSI. Performance standards for antimicrobial susceptibility testing. 20th ed. CLSI supplement M100 Wayne, PA: Clinical and Laboratory Standards Institute; 2019.

Yang Y, Jiang X, Chai B, Ma L, Li B, Zhang A, Cole JR, Tiedje JM, Zhang T. ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics 2016;32(15):2346-2351.

Elhassan MM, Ozbak HA, Hemeg HA, Elmekki MA, Ahmed LM. Absence of the mecA gene in methicillin resistant Staphylococcus aureus isolated from different clinical specimens in Shendi City, Sudan. Bio Med Res Int 2015;ID895860:1-5.

Hashem RA, Yassin AS, Zedan HH, Amin MA. Fluoroquinolone resistant mechanisms in methicillin-resistant Staphylococcus aureus clinical isolates in Cairo, Egypt J Infect Dev Ctries 2013;7(11):796-803.

Chokshi A, Sifri Z, Cennimo D, Horng H. Global contributors to antibiotic resistance. J Glob Infect Dis 2019;11(1):36–42.

Yang F, Zhang S, Shang X, Li H, Zhang H, Cui D, Wang X, et al. Short communication: Detection and molecular characterization of methicillin-resistant Staphylococcus aureus isolated from subclinical bovine mastitis cases in China. J Dairy Sci 2020;103:840–845.

Li T, Lu H, Wang X, Gao Q, Dai Y, Shang J, Li M. Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Front Cell Infect Microbiol 2017;7(127):1-10.

Cheng J, Qu W, Barkema HW, Nobrega DB, Gao J, Liu G, De Buck J, et al. Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. J Dairy Sci 2019;102:1–11.

Kadlec K, Entorf M, Peters T. Occurrence and characteristics of livestock-associated methicillin-resistant Staphylococcus aureus in quarter milk samples from dairy cows in Germany. Front Microbiol 2019;10:1295.

Thongratsakul S, Usui M, Higuchi H, Takahashi T, Sato T, Poolkhet Ch, Tamura Y. Prevalence and characterization of Staphylococcus aureus isolated in raw milk from cows in Hokkaido, Japan. Trop Anim Healt Prod 2020;52(4):1631-1637.

Mistry H, Sharma P, Mahato S, Saravanan R, Kumar PA, Bhandari V. Prevalence and characterization of oxacillin susceptible mecA-positive clinical isolates of Staphylococcus aureus causing bovine mastitis in India. Plos ONE 2016;11(9):e0162256.

Jiménez-Velásquez SC, Torres-Higuera LD, Parra-Arango GL, Rodríguez-Bautista JL, García-Castro FE, Patiño-Burbano RE. Perfil de resistencia antimicrobiana en aislamientos de Staphylococcus spp. obtenidos de leche bovina en Colombia. Rev Argent Microbiol 2020;52(2):121-130.

León-Galván MF, Barboza-Corona JE, Lechuga-Arana AA, Valencia-Posadas M, Aguayo DD, Cedillo-Pelaez C, Martínez-Ortega EA, Gutierrez-Chavez AJ. Molecular detection and sensitivity to antibiotics and bacteriocins of pathogens isolated from bovine mastitis in family dairy herds of Central Mexico. Bio Med Res Int 2015;2015:615153 1-9.

Ochoa-Zarzosa A, Loeza-Lara PD, Torres-Rodríguez F, Loeza-Ángeles H, Mascot-Chiquito N, Sánchez-Baca S, López-Meza JE. Antimicrobial susceptibility and invasive ability of Staphylococcus aureus isolates from mastitis from dairy backyard systems. Antonie van Leeuwenhoek 2008;94:199–206.

Karzis J, Petzer IM, Donkin EF, Naidoo V, Etter EMC. Climatic and regional antibiotic resistance patterns of Staphylococcus aureus in South African dairy herds. Onderstepoort J Vet Res 2019;86(1):e1-e9.

Yang F, Wang Q, Wang XR, Wang L, Li XP, Luo JY, Zhang SD, et al. Genetic characterization of antimicrobial resistance in Staphylococcus aureus isolated from bovine mastitis cases in Northwest China. J Integ Agr 2016;15(12):2842–2847.

Artursson K, Söderlund R, Liu L, Monecke S, Schelin J. Genotyping of Staphylococcus aureus in bovine mastitis and correlation to phenotypic characteristics. Vet Microbiol 2016;193:156-61.

Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews 2017;41:430–449.

Avila-Novoa MG, Iñíguez-Moreno M, Solís-Velázquez OA, González-Gómez JP, Guerrero-Medina PJ, Gutiérrez-Lomelí M. Biofilm formation by Staphylococcus aureus isolated from food contact surfaces in the dairy industry of Jalisco, Mexico. Hindawi J Food Qual 2018;ID1746139:1-8.

Piechota M, Kot B, Frankowska-Maciejewska A, Gruhewska A, Wofniak-Kosek A. Biofilm formation by methicillin-resistant and methicillin-sensitive Staphylococcus aureus strains from hospitalized patients in Poland. BioMed Res Int 2018; ID4657396:1-7.

Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms properties, regulation and roles in human disease. Virulence 2011;2(5):445-459.

Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: A complex developmental organism. Mol Microbiol 2017;104(3):365–376.

Dumaru R, Baral R, Shrestha LB. Study of biofilm formation and antibiotic resistance pattern of gram‑negative Bacilli among the clinical isolates at BPKIHS, Dharan. BMC Res Notes 2019;12(1):38.

Qi L, Li H, Zhang Ch, Liang B, Li J, Wang Li, Du X, et al. Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Acinetobacter baumannii. Front Microbiol 2016;7:483.

Bawankar SK. Correlation of antibiotic resistance and biofilm formation amongst uropathogenic E. coli. Indian J Appl Res 2018;8:4.

Cepas V, López Y, Muñoz E, Rolo D, Ardanuy C, Martí S, Xercavins M, et al. Relationship between biofilm formation and antimicrobial resistance in Gram-negative bacteria. Microb Drug Resist 2019;25:1.

Vitale M, Galluzzo P, Bu PB, Carlino E, Spezia O, Alduina R. Comparison of antibiotic resistance profile and biofilm production of Staphylococcus aureus isolates derived from human specimens and animal-derived samples. Antibiotics 2019;8:97.

Zhang Y, Xu D, Shi L, Cai R, Li Ch, Yan H. Association between agr type, virulence factors, biofilm formation and antibiotic resistance of Staphylococcus aureus isolates from pork production. Front Microbiol 2018;9:1876.

Tahmasebi H, Dehbashi S, Jahantigh M, Arabestani MR. Relationship between biofilm gene expression with antimicrobial resistance pattern and clinical specimen type based on sequence types (STs) of methicillin‑resistant S. aureus. Mol Biol Rep 2020;47(2):1309-1320.

Lin Q, Sun H, Yao K, Cai J, Ren Y, Chi Y. The prevalence, antibiotic resistance, and biofilm formation of Staphylococcus aureus in bulk Ready-to-eat foods. Biomolecules 2019;9:524.

Kwon AS, Park GC, Ryuc SY, Limd DH, Lime DY, Choi CL, Park Y, Lima Y. Higher biofilm formation in multidrug-resistant clinical isolates of Staphylococcus aureus. Int J Antimicrob Agents 2008;32:68–72.

O’Gara JP. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 2007;270:179–188.

Castelani L, Pilon LE, Martins T, Rodrigues-Pozzi C, Rodriguez-Pozzi Arcaro J. Investigation of biofilm production and icaA and icaD genes in Staphylococcus aureus isolated from heifers and cows with mastitis. Anim Sci J 2015;86(3):340-4.

Gad GFM, El-Feky MH, El-Rehewy MS, Hassan MA, Abolella H, El-Baky RMA. Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. J Infect Dev Ctries 2009;3(5):342-351.

Kivanc SA, Arik G, Akova-Budak B, Kivanc M. Biofilm forming capacity and antibiotic susceptibility of Staphylococcus spp. with the icaA/icaD/bap genotype isolated from ocular surface of patients with diabetes. Malawi Med J 2018;30 (4):243-249.

Dhanawade NB, Kalorey DR, Srinivasan R, Barbuddhe SB, Kurkure NV. Detection of intercellular adhesion genes and biofilm production in Staphylococcus aureus isolated from bovine subclinical mastitis. Vet Res Commun 2010;34:81–89.

Brakstad OG, Aasbakk K, Maeland JA. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 1992;30:1654–1660.

Publicado

11.02.2022

Cómo citar

Guzmán-Rodríguez, J. J., Salinas-Pérez, E., León-Galván, F., Barboza-Corona, J. E., Valencia-Posadas, M., Ávila-Ramos, F., … Gutiérrez-Chávez, A. J. (2022). Relación entre la resistencia a antibióticos y la producción de biofilm de aislados de Staphylococcus aureus provenientes de mastitis bovina. Revista Mexicana De Ciencias Pecuarias, 12(4), 1117–1132. https://doi.org/10.22319/rmcp.v12i4.5645
Metrics
Vistas/Descargas
  • Resumen
    906
  • PDF
    355
  • PDF
    276

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.