Índices de eficiencia alimenticia en ovinos de pelo: calidad de la carne y genes asociados. Revisión

Autores/as

  • Carlos Arce-Recinos Colegio de Postgraduados. Campus Tabasco. Periférico Carlos A. Molina, Km 3.5. Carretera Cárdenas-Huimanguillo. 86500 H. Cárdenas, Tabasco, México.
  • Alfonso Juventino Chay-Canul Universidad Juárez Autónoma de Tabasco. División Académica de Ciencias Agropecuarias, Tabasco, México.
  • Baldomero Alarcón-Zúñiga Universidad Autónoma Chapingo. Departamento de Zootecnia, Estado de México, México.
  • Jesús Alberto Ramos-Juárez Colegio de Postgraduados. Campus Tabasco. Periférico Carlos A. Molina, Km 3.5. Carretera Cárdenas-Huimanguillo. 86500 H. Cárdenas, Tabasco, México.
  • Luis Manuel Vargas-Villamil Colegio de Postgraduados. Campus Tabasco. Periférico Carlos A. Molina, Km 3.5. Carretera Cárdenas-Huimanguillo. 86500 H. Cárdenas, Tabasco, México.
  • Emilio Manuel Aranda-Ibáñez Colegio de Postgraduados. Campus Tabasco. Periférico Carlos A. Molina, Km 3.5. Carretera Cárdenas-Huimanguillo. 86500 H. Cárdenas, Tabasco, México.
  • Nathaly del Carmen Sánchez-Villegas Colegio de Postgraduados. Campus Tabasco. Periférico Carlos A. Molina, Km 3.5. Carretera Cárdenas-Huimanguillo. 86500 H. Cárdenas, Tabasco, México.
  • Ricardo Lopez Dias da Costa Instituto de Zootecnia. São Paulo, Brasil.

DOI:

https://doi.org/10.22319/rmcp.v12i2.5642

Palabras clave:

Eficiencia alimenticia, Calidad de carne, Genes, Ovinos de pelo.

Resumen

Los ovinos de pelo desempeñan un papel importante en la producción de carne en zonas tropicales, donde los estudios de eficiencia alimenticia han sido poco evaluados. El consumo de alimento representa más del 70 % de los costos; por lo tanto, la selección de animales con alta eficiencia alimenticia puede mejorar la rentabilidad del sistema de producción. Se han desarrollado herramientas que permiten seleccionar individuos con mayor eficiencia alimenticia sin comprometer la calidad del producto. Por lo que esta revisión tiene la finalidad de identificar estas herramientas genético-moleculares y estadísticas, como son, el consumo de alimento residual (CAR) y ganancia e ingesta residual (GIR). En la literatura consultada, se reportan diferencias en el consumo de materia seca (CMS) en un rango del 9 al 30 % entre animales eficientes e ineficientes, manteniendo una ganancia diaria de peso (GDP) similar empleando el índice CAR. Por otro lado, utilizando el índice GIR los CMS son similares, aunque la GDP en animales eficientes es mayor hasta en 50 g día-1, reduciendo la conversión alimenticia en un kilo. Esta diferencia se asume a un conjunto de genes asociados a la eficiencia alimenticia (Adra2a, Gfra1, Gh, Glis1, Il1rapl1, Lep, Lepr, Mc4r, Oxsm, Pde8b, Rarb, Ryr2, Sox5 y Sox6, Trdn), que pudieran ser utilizados para la selección de ovinos de razas de pelo con alta eficiencia alimenticia, teniendo en cuenta los genes relacionados con la calidad de carne (Capns1, Cast, Dgat1, Fabp4, Igf-i, Lep, Mstn y Scd).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

FAO. Faostat database. 2020. http://www.fao.org/faostat/en/#home, Consultado: 20 Ene, 2020.

SIAP. Ovino Población Ganadera 2009-2018. https://www.gob.mx/cms/uploads/attachment/file/516348/Inventario_2018_Ovino.pdf, Consultado: 15 Ene, 2020.

PROGAN. Programa Nacional Ganadero. SAGARPA. 2010. http://www.sagarpa.gob.mx/ganaderia/Programas/Paginas/PROGRAM.aspx

Chay-Canul AJ, Magaña-Monforte JG, Chizzotti ML, Piñeiro-Vázquez AT, Canul-Solís JR, Ayala-Burgos AJ, et al. Energy requirements of hair sheep in the tropical regions of Latin America. Review. Rev Mex Cien Pecu 2016;7(1):105-125.

Lima NLL, Ribeiro CRF, De Sá HCM, Júnior IL, Cavalcanti LFL, Santana RAV, et al. Economic analysis, performance, and feed efficiency in feedlot lambs. Rev Bras Zoot 2017;46(10):821-829.

Ellison MJ, Conant GC, Lamberson WR, Cockrum RR, Austin KJ, Rule DC, et al. Diet and feed efficiency status affect rumen microbial profiles of sheep. Small Ruminant Res 2017;(156):12-19.

Cantalapiedra-Hijar, G, Abo-Ismail M, Carstens, GE, Guan LL, Hegarty R, Kenny DA, et al. Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal 2018;12(S2):s321-s335.

Arthur JPF, Herd RM. Residual feed intake in beef cattle. Rev Bras Zootecn 2008;37(Suppl):269-279.

Koch RM, Swiger LA, Chambers D, Gregory KE. Efficiency of feed use in beef cattle. J Anim Sci 1963;(22):486-494.

Bezerra L, Sarmento J, Neto S, Paula N, Oliveira R, Rêgo W. Residual feed intake: a nutritional tool for genetic improvement. Trop Anim Health Prod 2013;(45):1649-1661.

Fitzsimons C, Kenny DA, McGee M. Visceral organ weights, digestion and carcass characteristics of beef bulls differing in residual feed intake offered a high concentrate diet. Animal 2014;(8):949-959.

Berry DP, Crowley JJ. Residual intake and gain: A new measure of efficiency in growing cattle. J Anim Sci 2012;(90):109-115.

Becker T. Consumer perception of fresh meat quality: a framework for analysis. Brit Food J 2000;(102):158-176.

Grochowska E, Borys B, Grzeskowiak E, Mroczkowski S. Effect of the calpain small subunit 1 gene (CAPNS1) polymorphism on meat quality traits in sheep. Small Ruminant Res 2017;(150):15-21.

Baker SD, Szasz JI, Klein TA, Kuber PS, Hunt CW, Glaze JBJr, et al. Residual feed intake of purebred Angus steers: Effects on meat quality and palatability. J Anim Sci 2006;(84):938-945.

Perkins SD, Key CN, Garrett CF, Foradori CD, Bratcher CL, Kriese-Anderson LA, Brandebourg TD. Residual feed intake studies in Angus-sired cattle reveal a potential role for hypothalamic gene expression in regulating feed efficiency. J Anim Sci 2014;92(2):549-560.

Gomes RC, Sainz RD, Silva SL, César MC, Bonin MN, Leme PR. Feedlot performance, feed efficiency reranking, carcass traits, body composition, energy requirements, meat quality and calpain system activity in Nellore steers with low and high residual feed intake. Livest Sci 2012;(150):265-273.

Fidelis HA, Bonilha SFM, Tedeschi LO, Branco RH, Cyrillo JNSG, Mercadante MEZ. Residual feed intake, carcass traits and meat quality in Nellore cattle. Meat Sci 2017;(128):34-39.

Zorzi K, Bonilha SFM, Queiroz AC, Branco RH, Sobrinho TL, Duarte MS. Meat quality of young Nellore bulls with low and high residual feed intake. Meat Sci 2013;(93):593-599.

Koohmaraie M, Kent MP, Shackelford SD, Veiseth E, Wheeler TL. Meat tenderness and muscle growth: is there any relationship?. Meat Sci 2002;62(3):345-352.

Castro-Bulle FCP, Paulino PV, Sanches AC, Sainz RD. Growth, carcass quality, and protein and energy metabolism in beef cattle with different growth potentials and residual feed intakes. J Anim Sci 2007;85(4):928-936.

McDonagh M, Herd R, Richardson E, Oddy V, Archer J, Arthur P. Meat quality and the calpain system of feedlot steers following a single generation of divergent selection for residual feed intake. Aust J Exp Agric 2001;(41):1013-1021.

Blasco A, Toro MA. A short critical history of the application of genomics to animal breeding. Livest Sci 2014;(166):4-9.

Benavides FJ, Guénet JL. Mouse genomics. In: Hedrich HJ editor. The laboratory mouse. 2nd ed. London: Elservier; 2012:57-90.

Singh U, Deb R, Rahman AR, Alex R, Kumar S, Chakraborty S, et al. Molecular markers and their applications in cattle genetic research: A review. Biomark Genom Med 2014;(6):49-58.

Archer JA, Reverter A, Herd RM, Johnston DJ, Arthur PF. Genetic variation in feed intake and efficiency of mature beef cows and relationships with post-weaning measurements. In: 7th World Congress Genetics Applied to Livestock Production. Montpellier, France. 2002:221-225.

Basarab JA, McCartney D, Okine EK, Baron VS. Relationships between progeny residual feed intake and dam productivity traits. Can J Anim Sci 2007;(87):489-502.

Crews JrDH, Shannon NH, Genswein BMA, Crews RE, Johnson CM, Kendrick BA. Genetic parameters for net feed efficiency of beef cattle measured during postweaning growing versus finishing periods. Proc West Sect Am Soc Anim Sci 2003;(54):125-128.

Steyn Y, Van Marle-Koster E, Theron HE. Residual feed intake as selection tool in South African Bonsmara cattle. Livest Sci 2014;(164):35-38.

Herd RM, Arthur PF. Physiological basis for residual feed intake. J Anim Sci 2009;87(E. Suppl):E64-E71.

Nkrumah JD, Okine EK, Mathison GW, Schmid K, Li C, Basarab JA, et al. Relationships of feedlot feed efficiency, performance and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J Anim Sci 2006;(84):145–153.

Hegarty RS, Goopy JP, Herd RM, McCorkell B. Cattle selected for lower residual feed intake have reduced daily methane production. J Anim Sci 2007;(85):1479-1486.

Fitzsimons C, Kenny DA, Deighton M, Fahey AG, McGee M. Methane emissions and rumen fermentation variables of beef heifers differing in phenotypic residual feed intake. J Anim Sci 2013;(91):5789-5800.

Basarab JA, Price MA, Aalhus JL, Okine EK, Snelling WM, Lyle KL. Residual feed intake and body composition in young growing cattle. Can J Anim Sci 2003;(83):189-204.

Lanna DP, Almeida R. Residual feed intake, um novo critério para seleção?. In: V Simpósio da Sociedade Brasileira de Melhoramento Animal. 2004:1-12. Disponible en: http://www.sbmaonline.org.br/anais/v/palestras/palest04.pdf>. Accessed: Dec 10, 2019.

Carneiro MMY, Morais MdaG, Souza ARDL, Fernandes HJ, Feijó GLD, Bonin MdeN, et al. Residual intake and gain for the evaluation of performance, non-carcass components, and carcass characteristics of confined crossbred Texel lambs. Rev Bras Zoot 2019;(48):e2018206.

Rocha RFAT, Souza ARDL, Morais MDaG, Carneiro MMY, Fernandes HJ, Feijó GLD, et al. Performance, carcass traits, and non-carcass components of feedlot finished lambs from different residual feed intake classes. Semin-Cienc Agrar 2018;39(6):2645-2658.

Lima-Montelli NLL, De Almeida AK, Ribeiro CRF, Grobe MD, Abrantes MAF, Lemos GS, et al. Performance, feeding behavior and digestibility of nutrients in lambs with divergent efficiency traits. Small Ruminant Res 2019;(180):50-56.

Paula EFE, Monteiro ALG, Prado OR, Cosmo TR, Junior NST, Kulik CH, et al. Medidas de desempenho e eficiência, características da carcaca mensuradas por ultrssonografia e o consumo alimentar residual de ovinos. Rev Acad Ciênc Agrár Ambient 2012;10(2):129-135.

Muro-Reyes A, Gutierrez-Banuelos H, Diaz-Garcia LH, Gutierres-Pina FJ, Escareno-Sanchez LM, et al. Potential environmental benefits of residual feed intake as strategy to mitigate methane emissions in sheep. J Anim Vet Adv 2011;10(12):1551-1556.

Bonilha MSF, Branco HR, Mercadante ZME, Cyrillo GJNS, Monteiro MF, Ribeiro EG. Digestion and metabolism of low and high residual feed intake Nellore bulls. Trop Anim Health Prod 2017;(49):529-535.

Richardson EC, Herd RM. Biological basis for variation in residual feed intake in beef cattle. 2. Synthesis of results following divergent selection. Aust J Exp Agric 2004;(44):431-440.

Allen MS. Review: Control of feed intake by hepatic oxidation in ruminant animals: integration of homeostasis and homeorhesis. Animal 2020;14(S1):s55-s64.

Standing Committee on Agriculture. Feeding standards for Australian livestock. Ruminants. East Melbourne, Australia. CSIRO Publications. 2000.

Redden RR, Surber LMM, Roeder BL, Nichols BM, Paterson JA, Kott RW. Residual feed efficiency established in a post-weaning growth test may not result in more efficient ewes on the range. Small Ruminant Res 2011;96(2-3):155-159.

Rajai-Sharifabadi H, Zamiri MJ, Rowghani E, Bottje WG. Relationship between the activity of mitochondrial respiratory chain complexes and feed efficiency in fat-tailed Ghezel lambs. J Anim Sci 2012;(90):1807-1815.

Paula EFE, Monteiro ALG, Souza DF, Prado OR, Nomura TM, Stivari TSS, et al. The residual feed intake and its relationship with performance and efficiency measures and in vivo carcass characteristics of lambs. Arq Bras Med Vet Zoot 2013;65(2):566-572.

Redden RR, Surber LMM, Grove AV, Kott RW. Growth efficiency of ewe lambs classified into residual feed intake groups and pen fed a restricted amount of feed. Small Ruminant Res 2013;(114):214-219.

Redden RR, Surber LMM, Grove AV, Kott RW. Effects of residual feed intake classification and method of alfalfa processing on ewe intake and growth. J Anim Sci 2014;92(2):830-835.

Meyer AM, Vraspir RA, Ellison MJ, Cammack KM. The relationship of residual feed intake and visceral organ size in growing lambs fed a concentrate-or forage-based diet. Livest Sci 2015;(176):85-90.

Rajai-Sharifabadi H, Naserian AA, Valizadeh R, Nassiry MR, Bottje WG, Redden RR. Growth performance, feed digestibility, body composition, and feeding behavior of high– and low–residual feed intake fat-tailed lambs under moderate feed restriction. J Anim Sci 2016;(94):3382-3388.

Liang YS, Li GZ, Li XY, Lü JY, Li FD, Tang DF, et al. Growth performance, rumen fermentation, bacteria composition, and gene expressions involved in intracellular pH regulation of rumen epithelium in finishing Hu lambs differing in residual feed intake phenotype1. J Anim Sci 2017;(95):1727-1738.

Zamiri MJ, Mehrabi R, Kavoosi GR, Rajaei-Sharifabadi H. Relationships between the activity of respiratory-chain complexes in pre-(biopsy) or post-slaughter muscle samples and feed efficiency in random-bred Ghezel lambs. Anim Prod Sci 2017;(57):1674-1681.

Zhang X, Wang W, Mo F, La Y, Li C, Li F. Association of residual feed intake with growth and slaughtering performance, blood metabolism, and body composition in growing lambs. Sci Rep 2017;(7):12681.

Zhang D, Zhang X, Li F, Li C, La Y, Mo F, et al. Transcriptome analysis identifies candidate genes and pathways associated with feed efficiency in Hu Sheep. Front Genet 2019;(10):1183.

Singh B, Mal G, Gautam SK, Mukesh M. Gut/rumen microbiome – A livestock and industrial perspective. In: Advances in animal biotechnology. Cham, Switzerland: Springer International Publishing; 2019:17-30.

King EE, Smith RP, St-Pierre B, Wright ADG. Differences in the Rumen Methanogen Populations of Lactating Jersey and Holstein Dairy Cows under the Same Diet Regimen. Appl Environ Microbiol 2011;(76):5682-5687.

Carberry CA, Kenny DA, Han S, McCabe MS, Waters SM. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Appl Environ Microbiol 2012;78(14):4949-4958.

Ellison MJ, Conant GC, Cockrum RR, Austin KJ, Truong H, Becchi M, et al. Diet alters both the structure and taxonomy of the ovine gut microbial ecosystem. DNA Res 2014;21(2):115-125.

Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, et al. Mitigación de las emisiones de gases de efecto invernadero en la producción ganadera – Una revisión de las opciones técnicas para la reducción de las emisiones de gases diferentes al CO2. En: Gerber PJ, et al editores. Producción y Sanidad Animal FAO, Documento No. 177. FAO, Roma, Italia. 2013:13-17.

Henderson G, Cox F, Ganesh S, Jonker A, Young W, Global Rumen Census Collaborators, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 2015;(5):14567.

Zhou M, Hernández-Sanabria E, Guan LL. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 2009;(75):6524-6533.

Paganoni B, Rose G, Macleay C, Jones C, Brown DJ, Kearney G, et al. More feed efficient sheep produce less methane and carbon dioxide when eating high-quality pellets. J Anim Sci 2017;(95):3839–3850.

Seabury CM, Oldeschulte DL, Saatchi M, Beever JE, Decker JE, Halley YA, et al. Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics 2017;(18):386.

Abo-Ismail MK, Lansink N, Akanno E, Karisa BK, Crowley JJ, Moore SS, et al. Development and validation of a small SNP panel for feed efficiency in beef cattle. J Anim Sci 2018;(96):375–397.

Higgins MG, Fitzsimons C, McClure MC, McKenna C, Conroy S, Kenny DA, et al. GWAS and eQTL analysis identifies a SNP associated with both residual feed intake and GFRA2 expression in beef cattle. Sci Rep 2018;(8):14301.

Duarte DAS, Newbold CJ, Detmann E, Silva FF, Freitas PHF, Veroneze R, et al. Genome-wide association studies pathway-based meta-analysis for residual feed intake in beef cattle. Anim Genet 2019;(50):150-153.

Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor GLIS1. Nature 2011;(474):225–229.

Han Y, Lefebvre V. L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer. Mol Cell Biol 2008;(28):4999–5013.

Montani C, Gritti L, Beretta S, Verpelli C, Sala C. The synaptic and neuronal functions of the x-linked intellectual disability protein interleukin-1 receptor accessory protein like 1 (IL1RAPL1). Dev Neurobiol 2019;79(1):85-95.

Ladyman SR, Grattan DR. Review JAK-STAT and feeding. JAK-STAT 2013;(2):e23675.

Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I, et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet 2012;21(12):2759-2767.

Gao T, Qian S, Shen S, Zhang X, Liu J, Jia W, et al. Reduction of mitochondrial 3-oxoacyl-ACP synthase (OXSM) by hyperglycemia is associated with deficiency of α-lipoic acid synthetic pathway in kidney of diabetic mice. Biochem Bioph Res Co 2019;512(1):106-111.

Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxycol 2006;46:451-480.

Houseknecht KL, Portocarrero CP. Leptin and its receptors: regulators of whole-body energy homeostasis. Domest Anim Endocrinol 1998;15(6):457-75.

Akers RM. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows. J Dairy Sci 2006;89(4):1222-1234.

Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci 2005;(8):571-578.

Lima JJ, Feng H, Duckworth L, Sylvester JE, Kissoon N, Garg H. Association analyses of adrenergic receptor polymorphisms with obesity and metabolic alterations. Metabolism 2007;(56):757-765.

Hayashi M, Matsushima K, Ohashi H, Tsunoda H, Murase S, Kawarada Y, Tanaka T. Molecular cloning and characterization of human PDE8B, a novel thyroid-specific isozyme of 3′,5′-cyclic nucleotide phosphodiesterase. Biochem Bioph Res Co 1998;250:751–756.

Kopp P. Thyroid hormone synthesis. In: Braverman LE, Utiger RD, editors. The thyroid. A fundamental and clinical text. New York: Lippincott; 2005:52–76.

Paratcha G, Ledda F, Baars L, Coulpier M, Besset V, Anders J, et al. Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-ret to lipid rafts. Neuron 2001;(29):171-184.

Yan W, Zhou H, Hu J, Luo Y, Hickford JGH. Variation in the FABP4 gene affects carcass and growth traits in sheep. Meat Sci 2018;(145):334-339.

Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 2008;49(11):2283-2301.

Rechler MM, Nissley SP. Insulin-Like Growth Factors. In: Sporn MB, Roberts AB editors. Peptide growth factors and their receptors I. Springer, New York, NY: Springer Study Edition; 1991:263-267.

Tellam RL, Cockett NE, Vuocolo T, Bidwell CA. Genes contributing to genetic variation of muscling in sheep. Front Genet 2012;(3):164.

Sampath H, Ntambi JM. Stearoyl-coenzyme A desaturase 1, sterol regulatory element binding protein-1c and peroxisome proliferator-activated receptor-α: independent and interactive roles in the regulation of lipid metabolism. Curr Opin Clin Nutr 2006;9(2):84-88.

Cockrum RR, Pickering NK, Anderson RM, Hyndman DL, Bixley MJ, Dodds KG, et al. Identification of single nucleotide polymorphisms associated with feed efficiency in rams. Proc West Sect Am Soc Anim Sci 2012;(63):79-83.

Jonas E, Martin GB, Celi P, Li L, Soattin M, Thomson PC, et al. Association of polymorphisms in leptin and leptin receptor genes with circulating leptin concentrations, production and efficiency traits in sheep. Small Ruminant Res 2016;(136):78-86.

Zhang L, Liu J, Zhao F, Ren H, Xu L, Lu J, et al. Genome-wide association studies for growth and meat production traits in sheep. Plos One 2013;8(6):e66569.

Hajihosseinlo A, Hashemi A, Sadeghi S. Association between polymorphism in exon 3 of leptin gene and growth traits in the Makooei sheep of Iran. Livest Res Rural Dev 2012;24(166). http://www.lrrd.org/lrrd24/9/haji24166.htm. Accessed Nov 22, 2019.

Gorlov IF, Kolosov YA, Shirikova NV, Getmantseva LV, Slozhenjina MI, Mosolova NI, et al. Association of the growth hormone gene polymorphism with growth traits in Salsk sheep breed. Small Ruminant Res 2017;(150):11-14.

Zou B, Liu G, Peng Y, Qian H, Liu J, Jiang X, Mara A. Melanocortin-4 receptor (MC4R) polymorphisms are associated with growth and meat quality traits in sheep. Mol Biol Rep 2014;(41):6967-6974.

Alvarenga AB, Rovadoscki GA, Petrini J, dos Santos ACP, Coutinho LL, Mourão GB, et al. Novelty SNPs for feed efficiency in Santa Inês breed sheep. In: Proc Int Meeting Adv Anim Sci. Campinas: GALOÁ. 2018. https://proceedings.science/imas/papers/novelty-snps-for-feed-efficiency-in-santa-ines-breed-sheep?lang=en. Accessed Nov 21, 2019.

De Almeida RFC, Françozo MC, Ludovico A. Fatty acid profile and lambs’ meat quality fed with different levels of crude glycerin replacing corn. Semin-Cienc Agrar 2017;38(4):2051–2064.

Corazzin M, Del Bianco S, Bovolenta S, Piasentier E. Carcass characteristics and meat quality of sheep and goat. In: Lorenzo JM, et al editors. More than beef, pork and chicken-The production, processing, and quality traits of other sources of meat for human diet. Cham, Switzerland: Springer International Publishing; 2019:119-165.

Boucher D, Palin MF, Castonguay F, Gariépy C, Pothier F. Detection of polymorphisms in the ovine leptin (LEP) gene: Association of a single nucleotide polymorphism with muscle growth and meat quality traits. Can J Anim Sci 2006;86(1):31-35.

Xu QL, Tang GW, Zhang QL, Huang YK, Liu YX, Quan K, et al. The FABP4 gene polymorphism is associated with meat tenderness in three Chinese native sheep breeds. Czech J Anim Sci 2011;(56):1-6.

Warner R. Meat: Conversion of Muscle into Meat. In: Caballero B, et al editors. The Encyclopedia of Food and Health. Oxford: Academic Press; 2016:677-684.

Gheisari HR, Shekarforoush SS, Aminlari M. Comparative studies on calpain activity of different muscles of cattle, camel, sheep and goat. Iran J Vet Res 2007;8(3):225–230.

Koohmaraie M, Geesink GH. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci 2006;74(1):34–43.

Aali M, Moradi-Shahrbabak H, Moradi-Shahrbabak M, Sadeghi M, Yousefi AR. Association of the calpastatin genotypes, haplotypes, and SNPs with meat quality and fatty acid composition in two Iranian fat- and thin-tailed sheep breeds. Small Ruminant Res 2017;(149):40-51.

Jawasreh KI, Jadallah R, Al-Amareen AH, Abdullah AY, Al-Qaisi A, Alrawashdeh IM, et al. Association between MspI calpastatin gene polymorphisms, growth performance, and meat characteristics of Awassi sheep. Indian J Anim Sci 2017;87(5):635-639.

Xu QL, Chen YL, Ma RX, Xue P. Polymorphism of DGAT1 associated with intramuscular fat-mediated tenderness in sheep. J Sci Food Agric 2009;(89):232–237.

Honikel KO. Water-holding capacity of Meat. In: Pas MFW, et al editors. Muscle development of livestock animals- physiology, genetics, and meat quality. UK: CABI Publishing; 2004:389-399.

Fisher K. Drip loss in pork: influencing factors and relation to further meat quality traits. J Anim Breed Genet 2007;124(1):12-18.

Grochowska E, Borys B, Janiszewski P, Knapik J, Mroczkowski S. Effect of the IGF-I gene polymorphism on growth, body size, carcass and meat quality traits in Coloured Polish Merino sheep. Arch Anim Breed 2017;(60):161-173.

Grochowska E, Borys B, Lisiak D, Mroczkowski S. Genotypic and allelic effects of the myostatin gene (MSTN) on carcass, meat quality, and biometric traits in Colored Polish Merino sheep. Meat Sci 2019;(151):4-17.

Calnan HB, Jacob RH, Pethick DW, Gardner GE. Factors affecting the colour of lamb meat from the longissimus muscle during display: The influence of muscle weight and muscle oxidative capacity. Meat Sci 2011;96(2B):1049-1057.

Hunt MC, Acton JC, Benedict RC, Calkins CR, Cornforth DP, Jeremiah LE, et al. Guidelines for meat color evaluation. Kansas State University, Manhattan, KS: American Meat Science Association; 1991:1-17.

Aali M, Moradi-Shahrbabak H, Moradi-Shahrbabak M, Sadeghi M, Kohram H. Polymorphism in the SCD gene is associated with meat quality and fatty acid composition in Iranian fat and thin tailed sheep breeds. Livest Sci 2016;(188):81-90

Publicado

15.09.2021

Cómo citar

Arce-Recinos, C., Chay-Canul, A. J., Alarcón-Zúñiga, B., Ramos-Juárez, J. A., Vargas-Villamil, L. M., Aranda-Ibáñez, E. M., … Lopez Dias da Costa, R. (2021). Índices de eficiencia alimenticia en ovinos de pelo: calidad de la carne y genes asociados. Revisión. Revista Mexicana De Ciencias Pecuarias, 12(2), 523–552. https://doi.org/10.22319/rmcp.v12i2.5642
Metrics
Vistas/Descargas
  • Resumen
    1241
  • PDF
    735
  • PDF
    463

Número

Sección

Revisiones bibliográficas

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a