Aspects related to the importance of using predictive models in sheep production. Review

Autores/as

  • Antonio Leandro Chaves Gurgel Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina Veterinária e Zootecnia. Avenida Senador Filinto Müler, 2443 - Pioneiros, 79074-460, Campo Grande, Mato Grosso do Sul, Brasil. http://orcid.org/0000-0001-5911-369X
  • Gelson dos Santos Difante Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina Veterinária e Zootecnia. Avenida Senador Filinto Müler, 2443 - Pioneiros, 79074-460, Campo Grande, Mato Grosso do Sul, Brasil. http://orcid.org/0000-0001-6610-8952
  • Luís Carlos Vinhas Ítavo Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina Veterinária e Zootecnia. Avenida Senador Filinto Müler, 2443 - Pioneiros, 79074-460, Campo Grande, Mato Grosso do Sul, Brasil. http://orcid.org/0000-0001-6895-8483
  • João Virgínio Emerenciano Neto Universidade Federal do Rio Grande do Norte, Unidade Acadêmica Especializada em Ciências Agrárias. Macaíba, Rio Grande do Norte, Brasil. http://orcid.org/0000-0003-3060-9696
  • Camila Celeste Brandão Ferreira Ítavo Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina Veterinária e Zootecnia. Avenida Senador Filinto Müler, 2443 - Pioneiros, 79074-460, Campo Grande, Mato Grosso do Sul, Brasil. http://orcid.org/0000-0002-4790-8177
  • Patrick Bezerra Fernandes Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina Veterinária e Zootecnia. Avenida Senador Filinto Müler, 2443 - Pioneiros, 79074-460, Campo Grande, Mato Grosso do Sul, Brasil. http://orcid.org/0000-0003-2368-943X
  • Carolina Marques Costa Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina Veterinária e Zootecnia. Avenida Senador Filinto Müler, 2443 - Pioneiros, 79074-460, Campo Grande, Mato Grosso do Sul, Brasil. http://orcid.org/0000-0002-0312-6755
  • Francisca Fernanda da Silva Roberto Universidade Federal da Paraíba, Centro de Ciências Agrárias. Areia, Paraíba, Brasil. http://orcid.org/0000-0001-6081-9542
  • Alfonso Juventino Chay-Canul Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Agropecuarias. Villahermosa, Tabasco, México. http://orcid.org/0000-0003-4412-4972

DOI:

https://doi.org/10.22319/rmcp.v14i1.6126

Palabras clave:

Biometric measurements, Carcass, Intake prediction, Mathematical equations, Meat sheep farming, Tropical pasture

Resumen

Sheep production systems face numerous challenges, which make decision-making a process fraught with risks and uncertainties. Modelling is a helpful tool in this respect, as it allows decision-makers to evaluate the behaviour of variables and their interrelationships, in addition to using previous or related information to predict results and simulate different scenarios. The advent of prediction models has made it possible to monitor the weight of an animal and determine the best time for its sale. Additionally, it allows producers to estimate the weights of the carcass and major marketable cuts before slaughter. All this information is directly associated with the profitability and success of the production activity. Therefore, in view of the different applications of mathematical models in production systems, this literature review examines concepts in modelling studies and the importance of using prediction models in meat sheep production. Furthermore, it addresses the practical application of modelling studies in predicting dry matter intake and carcass traits of meat sheep through correlated variables.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Trindade TFM, Difante GS, Emerenciano Neto JV, Fernandes LS, Araújo IMM, Véras ELL, et al. Biometry and carcass characteristics of lambs supplemented in tropical grass pastures during the dry Season. Biosci J 2018;34(1):172-179.

Gurgel ALC, Difante GS, Emerenciano Neto JV, Costa MG, Dantas JLS, et al. Supplementation of lamb ewes with different protein sources in deferred marandu palisadegrass (Brachiaria brizantha cv. Marandu) pasture. Arq Bras Med Vet Zootec 2020;72(5):1901-1910.

Araújo CGF, Costa MG, Difante GS, Emerenciano Neto JV, Gurgel ALC, et al. Carcass characteristics, meat quality and composition of lambs finished in cultivated pastures. Food Sci Technol 2021; Ahead of Print: 1-6.

Hermuche PM, Maranhão RLA, Guimarães RF, Carvalho Júnior OA, Gomes RAT, Paiva SR, Mcmanus C. Dynamics of sheep production in Brazil. Int J Geoinformatics 2013;2(3):665-679.

Nadal-Roiga E, Plà-Aragonèsa EM, Pagès-Bernausa A, Albornoz VM. A two-stage stochastic model for pig production planning in vertically integrated production systems. Comput Electron Agric 2021;176:e105615.

Calvano MPCA, Brumatti RC, Barros JC, Garcia MV, Martins KR, Andreotti R. Bioeconomic simulation of Rhipicephalus microplus infestation in different beef cattle production systems in the Brazilian Cerrado. Agric Syst 2021;194:e103247, 2021.

Calvano MPCA, Brumatti RC, Garcia MV, Barros JC, Andreotti A. Economic efficiency of Rhipicephalus microplus control and effect on beef cattle performance in the Brazilian Cerrado. Exp Appl Acarol 2019;79:459-471.

Tedeschi LO, Menendez HM. Mathematical modeling in animal production. In: Bazer FW, Lamb GC, Wu G editors. Animal agriculture sustainability, challenges and innovations. 1rst ed. Cambridge: Academic Press; 2020:431-453.

Gurgel ALC, Difante GS, Emerenciano NJV, Santana JCS, Fernandes PB, Santos GT, et al. Prediction of dry matter intake by meat sheep on tropical pastures. Trop Anim Health Prod 2021;53:e479.

Silva FL, Alencar MM, Freitas AR, Packer IU, Mourão GB. Curvas de crescimento em vacas de corte de diferentes tipos biológicos. Pesqui Agropecu Bras 2011;46(3):262-271.

Sousa JER, Façanha DAE, Bermejo LA, Ferreira JB, Paiva RDM, Nunes SF, Souza MSM. Evaluation of non-linear models for growth curve in Brazilian tropical goats. Trop Anim Health Prod 2021;53:e198.

Costa RG, Lima AGVDO, Ribeiro NL, Medeiros AND, Medeiros GRD, Gonzaga Neto S, Oliveira RL. Predicting the carcass characteristics of Morada Nova lambs using biometric measurements. Rev Bras Zootec 2020;49:e20190179.

Shehata MF. Prediction of live body weight and carcass traits by some live body measurements in Barki lambs. Egyptian J Anim Prod 2013;50(2):69-75.

Hamilton MA. Model validation: an annotated bibliography. Commun Stat - Theory Methods1991;20(7):2207-2266.

Pool R. Is it real, or is it Cray?. Science 1989;244(4811):1438-1440.

Devi S, Mishra RP. A mathematical model to see the effects of increasing environmental temperature on plant–pollinator interactions. Modelo Earth Syst Environ 2020;6:1315-1329.

Mandal S, Islam MS, Biswas MHA, Akter S. A mathematical model applied to investigate the potential impact of global warming on marine ecosystems. Appl Math Model 2022;101:19-37.

Dover DC, Kirwin EM, Hernandez-Ceron N, Nelson KA. Pandemic Risk Assessment Model (PRAM): a mathematical modeling approach to pandemic influenza planning. Epidemiol Infect 2016;144:3400-3411.

Waters SL, Schumacher LJ, Haj AJE. Regenerative medicine meets mathematical modelling: developing symbiotic relationships. Regen Med 2021;6:e24.

Brandt AR. Review of mathematical models of future oil supply: Historical overview and synthesizing critique. Energy 2010;35:3958-3974.

Madadelahi M, Acosta-Soto LF, Hosseini S, Martinez-Chapa SO, Madou MJ. Mathematical modeling and computational analysis of centrifugal microfluidic platforms: a review. Lab Chip 2020;20:1318-1357.

Yu PY, Craciun G. Mathematical analysis of chemical reaction systems. Isr J Chem 2018;58:733-741.

Shamsi M, Mohammadi A, Manshadia MKD, Sanati-Nezhad, A. Mathematical and computational modeling of nano-engineered drug delivery systems. J Control Release 2019;307:150-165.

Eriksson K. The accuracy of mathematical models of justice evaluations. J Math Sociol 2012;36:125-135.

edeschi LO. Assessment of the adequacy of mathematical models. Agric Syst 2006; 89:225-247.

Zanetti D, Prados LF, Menezes ACB, Silva BC, Pacheco MVC, Silva FAZ, et al. Prediction of water intake to Bos indicus beef cattle raised under tropical conditions. J Anim Sci 2019;97:1364-1374.

Richards FJ. A flexible growth function for empirical use. J Exp Bot. 1959;10:290-301.

Fernandes HJ, Tedeschi LO, Paulino MF, Detmann E, Paiva LS, Valadares SC, Silva AG, Azevêdo JAG. Evaluation of mathematical models to describe growth of grazing young bulls. Rev Bras Zootec 2012;41:367-373.

Leite RG, Cardoso AS, Fonseca NVB, Silva MLC, Tedeschi LO, Delevatti LM, et al. Effects of nitrogen fertilization on protein and carbohydrate fractions of Marandu palisadegrass. Sci Rep 2021;11:e14786.

Brunetti HB, Boote KJ, Santos PM, Pezzopane JRM, Pedreira CGS, Lara MAS, et al. Improving the CROPGRO Perennial Forage Model for simulating growth and biomass partitioning of guineagrass. Agron J 2021;113:1-16.

NRC. National Research Council. Nutrient requirements of small ruminants: sheep, goats, cervids and new world camelids. Washington, DC, USA: National Academy Press; 2007.

Oreskes N, Shrader-Frechette K, Belitz K. Verification, validation, and confirmation of numerical models in the earth sciences. Science 1996;263:641-646.

Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. Applied linear statistical models. New York, USA: McGraw-Hill Publishing Co.; 1996.

Agresti, A. Categorical data analysis. New Jersey, USA: John Wiley & Sons. 2002.

Dent JB, Blackie MJ. Systems simulation in agriculture. London: Applied Science; 1979.

Mayer DG, Stuart MA, Swain AJ. Regression of real-world data on model output: an appropriate overall test of validity. Agric Syst 1994;45:93-104.

Analla M. Model validation through the linear regression fit to actual versus predicted values. Agric Syst 1998;57:115-119.

Bunke O, Droge B. Estimators of the mean squared error of prediction in linear regression. Technometrics 1984;26:145-155.

Morais MG, Menezes BB, Ribeiro CB, Walker CC, Fernandes HJ, Souza ARDL, et al. Models predict the proportion of bone, muscle, and fat in ewe lamb carcasses from in vivo measurements of the 9th to 11th rib section and of the 12th rib. Semin Cienc Agrar 2016;37:1081-1090.

Bautista-Díaz E, Mezo-Solis JA, Herrera-Camacho J, Cruz-Hernández A, Gomez-Vazquez A, Tedeschi LO, et al. Prediction of carcass traits of hair sheep lambs using body measurements. Animal 2020;10:e1276.

King TS, Chinchilli VM. A generalized concordance correlation coefficient for continuous and categorical data. Stat Med 2001;20:2131-2147.

Cabral LS, Neves EMO, Zervoudakis JT, Abreu JG, Rodrigues RC, Souza AL, Oliveira IS. Nutrients requirements estimative for sheep in Brazilian conditions. Rev Bras Saúde Prod Anim 2008;9:529-542.

Vieira PAS, Pereira LGR, Azevêdo JAG, Neves ALA, Chizzotti ML, Santos RD, et al. Development of mathematical models to predict dry matter intake in feedlot Santa Ines rams. Small Ruminant Res 2013;122:78-84.

Allen MS. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J Dairy Sci 2000;83:1598-1624.

Oliveira AP, Pereira ES, Pinto AP, Silva AMA, Carneiro MSS, Mizubuti IY, et al. Estimativas dos requisitos nutricionais e utilização do modelo Small Ruminant Nutrition System para ovinos deslanados em condições semiáridas. Semin Cienc Agrar 2014;35:1985-1998.

Romera AJ, Gregorini P, Beukes PC. Technical note: a simple model to estimate changes in dietary composition of strip-grazed cattle during progressive pasture defoliation. J Dairy Sci 2010;93:3074-3078.

McDowell LR. Nutrient requirements of ruminants. In: McDowell LR. Nutrition of grazing ruminants in warm climates. Cambridge: Academic Press 1985:21-36.

Mertens DR. Regulation of forage intake. In: Fahey Junior GC. Forage quality, evaluation and utilization. Am Soc Agron 1994:450-492.

Carvalho PCF. Harry Stobbs Memorial Lecture: Can grazing behavior support innovations in grassland management?. Trop Grassl-Forrages 2013;1:137-155.

Baumont R, Cohen-Salmão D, Prache S, Sauvant D. A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions. Anim Feed Sci Technol 2004;112:5-28.

Bremm C, Carvalho PC, Fonseca L, Amaral GA, Mezzalira JC, Perez NB, et al. Diet switching by mammalian herbivores in response to exotic grass invasion. Plos One 2016;11:e0150167.

Gonçalves RP, Bremm C, Moojen FG, Marchi D, Zubricki G, Caetano LAM, et al. Grazing down process: The implications of sheep's ingestive behavior for sward management. Livest Sci 2018;214:202-208.

Hodgson J. Grazing management. Science into practice. Longman Group UK Ltd., 1990.

Guzatti GC, Duchini PG, Sbrissia AF, Mezzalira JC, Almeida JGR, Carvalho PCF, Ribeiro-Filho HMN. Changes in the short-term intake rate of herbage by heifers grazing annual grasses throughout the growing season. Grassl Sci 2017;63:255-264.

Gregorini P, Beukes PC, Romera AJG, Hanigan MD. A model of diurnal grazing patterns and herbage intake of a dairy cow, MINDY: Model description. Ecol Model 2013;270:11-29.

Pittroff W, Kothmann MM. Quantitative prediction of feed intake in ruminants: I. Conceptual and mathematical analysis of models for sheep. Livest Prod Sci 2001;71:131-150.

Freer M, Moore AD, Donnelly JR. GRAZPLAN: Decision support systems for Australian grazing enterprises—II. The animal biology model for feed intake, production and reproduction and the Graz Feed DSS. Agric Syst 1997;54:77-126.

Leal ES, Ítavo LCV, Valle CB, Ítavo CCBF, Dias AM, Difante GS, et al. Influence of protodioscin content on digestibility and in vitro degradation kinetics in Urochloa brizantha cultivars. Crop Pasture Sci 2020;72:278-284.

Ítavo LCV, Ítavo CCBF, Valle CB, Dias AM, Difante GS, Morais MG, et al. Brachiaria grasses in vitro digestibility with bovine and ovine ruminal liquid as inoculum. Rev Mex Cienc Pecu 2021;12:1045-11060.

Euclides VPB, Montagner DB, Araújo AR, Pereira MA, Difante GS, Araújo IMM, et al. Biological and economic responses to increasing nitrogen rates in Mombaça guinea grass pastures. Sci Rep 2022;12:1937.

Mccall DG. A systems approach to research planning to North Island hill country. [Doctoral thesis]. New Zealand, DF: Massey University; 1984.

Medeiros HR. Avaliação de modelos matemáticos desenvolvidos para auxiliar a tomada de decisão em sistemas de produção de ruminantes em pastagens. [Doctoral thesis]. Brazil, SP: Universidade de São Paulo; 2003.

Gurgel ALC, Difante GS, Emerenciano NJV, Fernandes HJ, Itavo LCV, Itavo CCBF, et al. Evaluation of mathematical models to describe lamb growth during the pre-weaning phase. Semin Cienc Agrar 2021;42:2119-2126.

Conrado VDC, Arandas JKG, Ribeiro MN. Modelos de regressão para predição do peso da raça Canindé através de medidas morfométricas. Arch Zootec 2015;64:277-280.

Chay-Canul AJ, García-Herrera RA, Salazar-Cuytún R, Ojeda-Robertos NF, Cruz-Hernández A, Fonseca MA, Canul-Solís JR. Development and evaluation of equations to predict body weight of Pelibuey ewes using heart girth. Rev Mex Cienc Pecu 2019;10:767-777.

Canul-Solis J, Angeles-Hernández JC, García-Herrera RA, Razo-Rodríguez D, Lee-Rangle HA, Piñeiro-Vázquez AT, et al. Estimation of body weight in hair ewes using an indirect measurement method. Trop Anim Health Prod 2020;52:2341-2347.

Salazar-Cuytun R, Garcia-Herrera RA, Munoz-Benitez AL, Ptacek M, Portillo-Salgado R, Bello-Perez EV, Chay-Canul AJ. Relationship between body volume and body weight in Pelibuey ewes. Trop Subtrop Agroecosyst 2021;24:e125.

Málková A, Ptáček M, Chay-Canul A, Stádník L. Statistical models for estimating lamb birth weight using body measurements. Ital J Anim Sci 2021;20:1063-1068.

Gurgel ALC, Difante GS, Emerenciano NJV, Santana JCS, Dantas JLS, Roberto FFS, et al. Use of biometrics in the prediction of body weight in crossbred lambs. Arq Bras Med Vet Zootec 2021;73:261-264.

Oliveira DP, Oliveira CAL, Martins ENM, Vargas Junior FM, Barbosa-Ferreira M, Seno LO, et al. Morphostructural characterization of female and young male of naturalized Sul-mato-grossenses “Pantaneiros” sheep. Semin Cienc Agrar 2014;35: 73-986.

Kumar S, Dahiya SP, Malik ZS, Patil CS. Prediction of body weight from linear body measurements in sheep. Indian J Anim Res 2018;52:1263-1266.

Huma ZE, Iqbal F. Predicting the body weight of Balochi sheep using a machine learning approach. Turk J Vet Anim Sci 2019;43:500-506.

Worku A. Body weight had highest correlation coefficient with heart girth around the chest under the same farmers feeding conditions for Arsi Bale sheep. Int J Food Sci Technol 2019;5:6-12.

Grandis FA, Fernandes Junior F, Cunha LFC, Dias CBA, Ribeiro ELA, Constantino C, et al. Relação entre medidas biométricas e peso corporal em ovinos da raça Texel. Vet Zootec 2018;25:1-8.

Paputungan U, Hendrik MJ, Utiah W. Predicting live weight of Indonesian Local-Bali cattle using body volume formula. Livest Res Rural Dev 2018;30:8

Le Cozler Y, Allain C, Xavier C, Depuille L, Caillot A, Delouard JM, et al. Volume and surface area of Holstein dairy cows calculated from complete 3D shapes acquired using a high-precision scanning system: Interest for body weight estimation. Comput Electron Agric 2019;165:e104977.

Gomes MB, Neves MLMW, Barreto LMG, Ferreira MA, Monnerat JPIS, Carone GM, Morais JSASC. Prediction of carcass composition through measurements in vivo and measurements of the carcass of growing Santa Inês sheep. Plos One 2021;16:1-17.

Bautista-Díaz E, Salazar-Cuytun R, Chay-Canul AJ, Herrera RAG, Piñeiro-Vázquez ÁT, Monforte JGM, et al. Determination of carcass traits in Pelibuey ewes using biometric measurements. Small Ruminant Res 2017;147:115-119.

Alves AAC, Pinzon AC, Costa RM, Silva MSS, Vieira EHM, Mendonça IB, et al. Multiple regression and machine learning based methods for carcass traits and saleable meat cuts prediction using non-invasive in vivo measurements in commercial lambs. Small Ruminant Res 2019;171:49-56.

Castilhos AM, Francisco CL, Branco RH, Bonilha SFM, Mercadante MEZ, Meirelles PRL, et al. In vivo ultrasound and biometric measurements predict the empty body chemical composition in Nellore. J Anim Sci 2018;96:1678-1687.

Gurgel ALC, Difante GS, Emerenciano Neto JV, Araujo CGF, Costa MG, Itavo LCV, et al. Prediction of carcass traits of Santa Inês lambs finished in tropical pastures through biometric measurements. Animal 2021;11:e2329.

Costa RG, Ribeiro NL, Cavalcante ITR, Roberto FFS, Lima PR. Carne de caprinos e ovinos do Nordeste: Diferenciação e agregação de valor. Rev Cient Prod Anim 2019;21:25-33.

Oliveira JPF, Ferreira MA, Alves AMSV, Melo ACC, Andrade IB, Urbano SA, et al. Carcass characteristics of lambs fed spineless cactus as a replacement for sugarcane. Asian Australas J Anim Sci 2018;31:529-536.

Abdel-Moneim AY. Body and carcass characteristics of Ossimi, Barki and Rahmani ram lambs raised under intensive production system. Egypt J Sheep Goats Sci 2009;4:1-16.

Ekiz B, Yilmaz A, Ozcan M, Kocak O. Effect of production system on carcass measurements and meat quality of Kivircik lambs. Meat Sci 2012;90:465-471.

Hopkins DL, Mortimer SI. Effect of genotype, gender and age on sheep meat quality and a case study illustrating integration of knowledge. Meat Sci 2014;98:544-555.

Publicado

27.12.2022

Cómo citar

Chaves Gurgel, A. L., Difante, G. dos S., Vinhas Ítavo, L. C., Emerenciano Neto, J. V., Brandão Ferreira Ítavo, C. C., Bezerra Fernandes, P., … Chay-Canul, A. J. (2022). Aspects related to the importance of using predictive models in sheep production. Review. Revista Mexicana De Ciencias Pecuarias, 14(1), 204–227. https://doi.org/10.22319/rmcp.v14i1.6126
Metrics
Vistas/Descargas
  • Resumen
    1230
  • PDF
    437
  • PDF
    442
  • Full text
    595

Número

Sección

Revisiones bibliográficas

Métrica

Artículos más leídos del mismo autor/a

1 2 > >>