Treating horse chronic laminitis with allogeneic bone marrow mesenchymal stem cells

Autores/as

  • Alma A. García-Lascuráin Universidad Nacional Autónoma de México (UNAM). Facultad de Medicina Veterinaria y Zootecnia. Departamento de Medicina, Cirugía y Zootecnia para Équidos. 04510 Ciudad de México, México. UNAM. Facultad de Medicina Veterinaria y Zootecnia, Programa de Doctorado en Ciencias de la Producción y de la Salud Animal, Ciudad de México, México.
  • Gabriela Aranda-Contreras UNAM. Facultad de Estudios Superiores Cuautitlán. Hospital para Equinos, Cuautitlán Izcalli, Estado de México, México.
  • Margarita Gomez-Chavarin https://orcid.org/0000-0002-2038-668X
  • Ricardo Gómez Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”. Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa. Ciudad de México, México.
  • Adriana Méndez-Bernal UNAM. Facultad de Medicina Veterinaria y Zootecnia. Departamento de Patología. Ciudad de México, México.
  • Gabriel Gutiérrez-Ospina UNAM. Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Ciudad de México, México.
  • María Masri Universidad Nacional Autónoma de México (UNAM). Facultad de Medicina Veterinaria y Zootecnia. Departamento de Medicina, Cirugía y Zootecnia para Équidos. 04510 Ciudad de México, México.

DOI:

https://doi.org/10.22319/rmcp.v12i3.5765

Palabras clave:

Horses, Laminitis, ABM-MSCs, aMSCs, MMP, MSCs, PRP, Platelet rich plasma

Resumen

Chronic laminitis is a disabling condition that affects the laminar corium of the horse’s hooves. Commonly, it develops as a collateral injury of numerous primary systemic diseases. It is believed that the critical physiopathological event that renders a hoof laminitic is the loss of mesenchymal stem cells. This loss greatly impairs the ability of the laminar corium to regenerate. Although previous work provides credibility to this notion, there remain unsettled issues that must be addressed before accepting it as a well-founded fact. Here, it was reexamined the central tenet of the physiopathological model of laminitis by infusing allogeneic bone marrow-derived mesenchymal stem cells (ABM-MSCs), through the digital palmar vein, into the hooves of horses afflicted by chronic laminitis. Horses were clinically monitored during 6 mo by evaluating them monthly using the lameness-modified Obel-Glasgow’s scale and hooves thermography. Venograms and lamellar biopsies were taken at the beginning and at the end of the study period to gathered evidence on vascular remodeling and laminar corium regeneration. The results showed that ABM-MSCs infusion promotes vascular remodeling and laminar corium regeneration, further supporting that the loss of stem cells is the critical event leading to chronic laminitis. This work also demonstrated that the infusion of ABM-MSCs is safe since the treated horses did not develop local or systemic, negative clinical manifestations attuned with rejection reactions, at least during the 6-mo period they were follow up and under the therapeutic scheme proposed.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Lecchi C, Dalla CE, Lebelt D, Ferrante V, Canali E, Ceciliani F, et al. Circulating miR-23b-3p, miR-145-5p and miR-200b-3p are potential biomarkers to monitor acute pain associated with laminitis in horses. Animal 2018;12(2):366-375.

Pollit CC. Lamellar function at the cellular level. In: Belknap JK, Geor R, editors. Equine laminitis. Willey, Blackwell, Iowa, USA; 2017:22-38.

Angelone M, Conti V, Biacca C, Battaglia B, Pecorari L, Piana F, et al. The contribution of adipose tissue-derived mesenchymal stem cells and platelet-rich plasma to the treatment of chronic equine laminitis: A proof of concept. Int J Molecular Sci 2017;18(2122).

Driessen B, Bauquier SH, Zarucco L. Neuropathic pain management in chronic laminitis. Vet Clin North Am Equine Pract 2010;(26):315-337.

Faleiros RR, Belknap JK. Leukocytes and inflammatory signaling in laminitis: Leukocytes. In: Belknap JK, Geor R, editors. Equine laminitis. Iowa, USA: Willey, Blackwell; 2017:91-101.

Carter R, Engiles J, Megee S, Senoo M, Galantino-Homer H. Decreased expression of p63, a regulator of epidermal stem cells, in the chronic laminitic equine hoof. Equine Vet J 2011;43(5):543-551.

Salem H, Thiemermann C. Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells 2010;28(3):585-596.

Keating A. Mesenchymal stromal cells: New directions. Stem Cell. Elsevier Inc. 2012;10(6):709-716.

Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differentiation 2014;21(2):216-225.

Yu H, Fischer G, Ebert AD, Wu H, Bai X, Hogan QH. Analgesia for neuropathic pain by dorsal root ganglion transplantation of genetically engineered mesenchymal stem cell: initial results. Molecular Pain 2015;11(5).

Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noel D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther 2010;1(1):2.

Cassano J, Schnabel L, Betancourt A, Antczak D, Fortier L. Mesenchymal stem Cell therapy: Clinical progress and opportunities for advancement. Current Pathol Reports 2015;3(1):1-7.

Renzi S, Ricco S, Dotti S, Sesso L, Grolli S, Cornali M, et al. Autologous bone marrow mesenchymal stromal cells for regeneration of injured equine ligaments and tendons: A clinical report. Res Vet Sci 2013;(95):272-277.

Carrade DD, Borjesson DL. Immunomodulation by mesenchymal stem cells in veterinary species. Comp Med 2013;(63):207-217.

Kol A, Wood JA, Carrade HDD, Gillette JA, Bohannon-Worsley LK, Puchalski SM, et al. Multiple intravenous injections of allogeneic equine mesenchymal stem cells do not induce a systemic inflammatory response but do alter lymphocyte subsets in healthy horses. Stem Cells Res Ther 2015;6:73.

Pezzanite LM, Fortier LA, Antczak DF, Cassano JM, Bronahan MM, Miller D, et al. Equine allogeneic bone marrow-derived mesenchymal stromal cells elicit antibody responses in vivo. Stem Cell Res Ther 2015;6(54).

Ardanaz N, Vázquez FJ, Romero A, Remacha AR, Barrachina L, Sanz A, et al. Inflammatory response to the administration of mesenchymal stem cells in an equine experimental model: Effect of autologous, and single and repeat doses of pooled allogeneic cells in healthy joints. BMC Vet Res 2016;12(65).

Owens SD, Kol A, Walker NJ, Borjesson DL. Allogeneic mesenchymal stem cells treatment induces specific alloantibodies in horses. Stem Cells Internat 2016; doi: 10.1155/2016/5830103.

Brandao JS, Alvarenga ML, Pfeifer JPH, dos Santos VH, Fonseca-Alves CE, Rodrigues M, et al. Allogeneic mesenchymal stem cells transplantation in healthy equine superficial digital flexor tendon: A study of the local inflammatory response. Res Vet Sci 2018;118:423-430.

Douthit TL, Bormann JM, Bello NM. Assessing the association between hoof thermography and hoof Doppler ultrasonography for the diagnosis of lameness in horses. J Equine Vet Sci 2014;34(2):275-280.

Rucker A, Redden RF, Arthur EG, Reed SK, Hill BW, Dziuban EM, et al. How to perform the digital Venogram. In: AAEP Proc (USA). 2006;52:526-530.

Gravena K, Sampaio R, Dias D, Canola P, Peiró J, de Lacerda-Neto J. Evaluation of the integrity of horse hoof dermal and epidermal tissues collected by dorsal transmural access. J Equine Vet Sci 2012;32(12):858-862.

Barberini DJ, Paiva-Freitas NP, Sartori-Magnoni M, Maia L, Listoni AJ, Heckler MC, et al. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential. Stem Cell Res Ther 2014;5(25).

De Schauwer C, Meyer E, Van de Walle GR, Van Soom A. Markers of stemness in equine mesenchymal stem cells: A plea for uniformity. Theriogenology 2011;75:1431-1443.

De Schauwer C, Piepers S, Van de Walle GR, Demeyere K, Hoogewijs MK, Govaere JL, et al. In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. Cytometry Part A, 2012;81(4):312-323.

Carvalho AM, Yamada ALM, Golim MA, Álvarez LEC, Jorge LL, Conceiçao ML, et al. Characterization of mesenchymal stem cells derived from equine adipose tissue. Arq Bras Med Vet Zootec 2013;65(4):939-945.

Carvalho AM, Yamada ALM, Martins JRB, Maia L, Gloim MA, Deffune E, et al. Isolation and characterization of equine peripheral blood-derived multipotent mesenchymal stromal cells. Pesq Vet Bras 2013;33(9):1151-1154.

Michler JK, Hillmann A, Saykovic V, Mulling CKW. Horse hair follicles: A novel dermal stem cell source for equine regenerative medicine. Cytometry Part A, 2018;93(1):104-114.

Steelman SM, Chowdhary BP. Plasma proteomics shows an elevation of the anti-inflammatory protein APOA-IV in chronic equine laminitis. Vet Res 2012;8(179).

Steelman SM, Johnson D, Wagner B, Stokes AM, Chowdhary BP. Cellular and humoral immunity in chronic equine laminitis. Vet Immunol Immunopathol 2013;153:217-226.

Falk D. Brain evolution in Homo: The “radiator” theory. Behavioral Brain Sci 1990;13:333-381.

King A, Balaji S, Keswani SP, Crombleholme TM. The role of stem cells in wound angiogenesis. Adv Wound Care 2014;10:614-625.

Schabbir A, Cox A, Rodríguez-Menocal L, Salgado M, Van Badiavas E. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Develop 2015;24(14):1635-1647.

Cortez-Toledo E, Rose M, Agu E, Dahlenburg H, Yao W, Nolta JA, et al. Enhancing retention of mesenchymal stem cells with prosurvival factors promotes angiogenesis in a mouse model of limb ischemia. Stem Cells Develop 2018;28:114-119. 2019 Jan 15;28(2):114-119. doi: 10.1089/scd.2018.0090.

Parks AH. Anatomy and function of the equine digit. In: Belknap JK, Geor R editors. Equine laminitis. USA: Willey, Blackwell, Iowa; 2017:22-38.

Theodosis DT, Poulain DA, Oliet SH. Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiology Rev 2008;88:983-1008.

Bonfanti L, Theodosis DT. Polysialic acid and activity-dependent synapse remodeling. Cell Adhesion Migration 2009;3(1):43-50.

Gu W, Hong X, Potter C, Qu A, Xu Q. Mesenchymal stem cells and vascular regeneration. Microcirculation 2017;24:e12324.

Ching RC, Wiberg M, Kingham PJ. Schwann cell-like differentiated adipose stem cells promote neurite outgrowth via secreted exosomes and RNA transfer. Stem Cell Res Ther 2018;9:266.

Zhang JC, Zceng GF, Wu L, Ou-Yang LY, Li WX. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats. Brazilian J Medical Biol Res 2014;47(10):886-894.

Bier A, Berenstein P, Kronfeld N, Morgoulis D, Ziv-Av A, Goldstein H, et al. Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophy. Biomaterials 2018;174:67-78.

Kim SC, Adams AB. Pluripotent stem cells that evade the immune radar. Nature Biotechnol 2017;35(8):722-723.

Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheumatism 2007;56(4):1175-1186.

Kol A, Wood J, Carrade HD, Gillette J, Bohannon-Worsley L, Puchalski S, et al. Multiple intravenous injections of allogeneic equine mesenchymal stem cells do not induce a systemic inflammatory response but do alter lymphocyte subsets in healthy horses. Stem Cell Res Ther 2015;6(73).

Deuse T, Hu X, Agbor-Enoh S, Koch M, Spitzer MH, Gravina A, et al. De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans. Nature Biotechnology. Letters. 2019.

Nishikawa S, Goldstein RA, Nierras C. The promise of human induced pluripotent stem cells for research and therapy. Nature Review Molecular Cell Biol 2008;9:725-729.

Bix M, Liao NS, Zijlstra M, Loring J, Jaenisch R, Raulet D. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 1991;349:329-331.

De Almeida PE, Ransohoff JD, Nahid A, Wu JC. Immunogenicity of pluripotent stem cells and their derivatives. Circ Res 2013;112:549-561.

Barrachina L, Remacha AR, Romero A, Vázquez FJ, Albareda J, Prades M, et al. Priming equine bone marrow-derived mesenchymal stem cells with proinflammatory cytokines: Implications in immunomodulation-immunogenicity balance, cell viability and differentiation potential. Stem Cells Dev 2017;26(1).

Jung JS, Volk C, Marga C, Navarrete Santos A, Jung M, Rujescu D, et al. Adipose-derived stem/stromal cells recapitulate aging markers and show reduced stem cell plasticity affecting their adipogenic differentiation capacity. Cellular Reprograming 2019;21(4):187-199.

Martínez-Alcantar L, Talavera-Carrillo DK, Pineda-Salazar JU, Ávalos-Viveros M, Gutiérrez-Ospina G, Philips-Farfán BV, et al. Anterior chamber associated immune deviation to cytosolic neural antigens avoids self-reactivity after optic nerve injury and polarizes the retinal environment to an anti-inflammatory profile. J Neuroimmunology 2019;333(476964).

Publicado

15.12.2021

Cómo citar

García-Lascuráin, A. A., Aranda-Contreras, G., Gomez-Chavarin, M., Gómez, R., Méndez-Bernal, A., Gutiérrez-Ospina, G., & Masri, M. (2021). Treating horse chronic laminitis with allogeneic bone marrow mesenchymal stem cells. Revista Mexicana De Ciencias Pecuarias, 12(3), 721–741. https://doi.org/10.22319/rmcp.v12i3.5765
Metrics
Vistas/Descargas
  • Resumen
    1011
  • PDF
    323
  • PDF
    292

Número

Sección

Artículos

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a