Assessment of antibiotic resistance in fecal samples from calves with diarrhea in the Cajamarca region, Peru

Authors

  • Marco Antonio Cabrera González Instituto Nacional de Innovación Agraria (INIA). Estación Experimental Baños del Inca. Dirección de Desarrollo Tecnológico Agrario, Jr. s/n Wiracocha, Baños del Inca, Cajamarca 06004, Perú. https://orcid.org/0000-0002-1696-8097
  • Héctor Vladimir Vásquez Pérez INIA. Dirección de Desarrollo Tecnológico Agrario, La Molina. Lima. Perú. https://orcid.org/0000-0003-4657-1397
  • Carlos Quilcate-Pairazamán INIA. Dirección de Desarrollo Tecnológico Agrario, La Molina. Lima. Perú. https://orcid.org/0000-0002-5422-8874
  • José Bazán-Arce Instituto Nacional de Innovación Agraria (INIA). Estación Experimental Baños del Inca. Dirección de Desarrollo Tecnológico Agrario, Jr. s/n Wiracocha, Baños del Inca, Cajamarca 06004, Perú. https://orcid.org/0000-0001-6490-818X
  • Medali Cueva-Rodríguez Instituto Nacional de Innovación Agraria (INIA). Estación Experimental Baños del Inca. Dirección de Desarrollo Tecnológico Agrario, Jr. s/n Wiracocha, Baños del Inca, Cajamarca 06004, Perú. https://orcid.org/0000-0002-1301-5477

DOI:

https://doi.org/10.22319/rmcp.v14i4.6354

Keywords:

Resistance, Antibiotics, E. coli, Calves, Diarrhea

Abstract

Diarrhea is associated with infectious bacteria that cause mortality in calves, such as Escherichia coli, representing a problem for milk and meat producers globally, causing large economic losses. This study assessed the resistance to E. coli strains isolated from diarrheal feces of newborn calves from the Cajamarca region. Fifty two (52) fecal samples from calves from five provinces of the Cajamarca region were collected for the isolation of E. coli on MacConkey agar with sorbitol. The molecular identification of E. coli was performed by amplification of the uidA gene by conventional PCR and then antibiotic susceptibility/resistance was assessed using the Kirby-Bauer methodology and antibiotic discs with neomycin, tetracycline, sulfamethoxazole-trimethoprim and enrofloxacin. The results were that 96.15 % of E. coli strains were resistant to tetracycline, 51.92 % to sulfamethoprim, 26.92 % to neomycin and 9.61 % to enrofloxacin. It was also demonstrated that  30.76 %  had resistance to two drugs,  19.23 %  to three drugs and 5.76 % to four drugs; a significant difference was found in resistance to tetracycline (P<0.0001). It is concluded that newborn calves from the Cajamarca region that presented diarrhea are carriers of antibiotic-resistant E. coli, representing a problem for cattle farmers, since these strains can cause the death of animals and contribute to the spread of antibiotic resistance.

Downloads

Download data is not yet available.

References

Foster DM, Smith GW. Pathophysiology of diarrhea in calves. Vet Clin North Am Food Anim Pract 2009;(25):13-36.

Blanchard PC. Diagnostics of dairy and beef cattle diarrhea. Vet Clin North Am Food Anim Pract 2012;(28):443–464. https://doi.org/10.1016/J.CVFA.2012.07.002.

Kolenda R, Burdukiewicz M, Schierack, P. A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front Cell Infect Microbiol 2015;(5):1-12. https://doi.org/10.3389/fcimb.2015.00023.

Barlow J. Mastitis therapy and antimicrobial susceptibility: A multispecies review with a focus on antibiotic treatment of mastitis in dairy cattle. J Mammary Gland Biol Neoplasia 2011;(6):383–407. https://doi.org/10.1007/s10911-011-9235-z.

Mcewen SA, Fedorka-Cray PJ. Antimicrobial use and resistance in animals. Clin Infect Dis 2002;(34):3:S93-S106.

Ma F, Xu S, Tang Z, Li Z, Zhang L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health 2021; (3):32–38. https://doi.org/10.1016/J.BSHEAL.2020.09.004.

Jarrige N, Cazeau G, Bosquet G, Bastien J, Benoit F, Gay E. Effects of antimicrobial exposure on the antimicrobial resistance of Escherichia coli in the digestive flora of dairy calves. Prev Vet Med 2020;(185):105177. https://doi.org/10.1016/j.prevetmed.2020.105177.

Gharieb R, Fawzi E, Elsohaby I. Antibiogram, virulotyping and genetic diversity of Escherichia coli and Salmonella serovars isolated from diarrheic calves and calf handlers. Com Immunol Microbiol Infect Dis 2019;(67):101367. https://doi.org/10.1016/j.cimid.2019.101367.

Louge-Uriarte EL, González-Pasayo RA, Massó M, Carrera-Paez L, Domínguez-Moncla M, Donis N, et al. Molecular characterization of multidrug-resistant Escherichia coli of the phylogroups A and C in dairy calves with meningitis and septicemia. Microbial Pathogenesis 2022;(163):105378. https://doi.org/10.1016/J.MICPATH.2021.105378.

Resapath A. French surveillance network for antimicrobial resistance in pathogenic bacteria of animal origin. ANSES. 2018.

Instituto de Estándares Clínicos y de Laboratorio (CLSI). Performance standards for antimicrobial susceptibility testing: Sixteenth Informational Suppl. Wayne, PA: 2006.

Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 2000;181(1):261-72. https://doi.org/dqjh6j.

Konno, T; Yatsuyanagi, J; Takahashi, S; Kumagai, Y. Isolation and identification of Escherichia albertii from a patient in an outbreak of gastroenteritis. Jpn J Infect Dis 2012;65:203-207. https://doi.org/f3zvj5.

Instituto de Estándares Clínicos y de Laboratorio (CLSI). The User's Guide for EUCAST and CLSI-potency Neo-Sensitabs™. http://pishrotashkhis.com/wp-content/uploads/2017/07/Neo-SENSITAB-CLSI-EUCAST-Potency.pdf.

Allocati N, Masulli M, Alexeyev MF, Di Ilio C. Escherichia coli in Europe: an overview. Int J Environ Res Public Health 2013;25(12):6235-54. doi: 10.3390/ijerph10126235. PMID: 24287850; PMCID: PMC3881111.

Astorga F, Navarrete-Talloni MJ, Miró MP, Bravo V, Toro M, Blondel CJ, Hervé-Claude LP. Antimicrobial resistance in E. coli isolated from dairy calves and bedding material. Heliyon 2019;26:(11):e02773. doi: 10.1016/j.heliyon.2019.e02773. PMID: 31844709; PMCID: PMC6888714.

Berge AC, Moore DA, Sischo WM. Field trial evaluating the influence of prophylactic and therapeutic antimicrobial administration on antimicrobial resistance of fecal Escherichia coli in dairy calves. Appl Environ Microbiol 2006;72(6):3872-8. doi: 10.1128/AEM.02239-05. PMID: 16751491; PMCID: PMC1489621.

Constable PD. Antimicrobial use in the treatment of calf diarrhea. J Vet Intern Med 2004;18(1):8-17. doi:10.1892/0891-6640(2004)18<8:auitto>2.0.co;2.

Duse A, Waller KP, Emanuelson U, Unnerstad HE, Persson Y, Bengtsson B. Farming practices in Sweden related to feeding milk and colostrum from cows treated with antimicrobials to dairy calves. Acta Vet Scand 2013;9:55(1):49. doi:10.1186/1751-0147-55-49. PMID: 23837498; PMCID: PMC3720286.

Brunton LA, Duncan D, Coldham NG, Snow LC, Jones JR. A survey of antimicrobial usage on dairy farms and waste milk feeding practices in England and Wales. Vet Rec 2012;22:171(12):296. doi:10.1136/vr.100924.

Duse A, Waller KP, Emanuelson U, Unnerstad HE, Persson Y, Bengtsson B. Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. J Dairy Sci 2015;98(1):500-16. doi:10.3168/jds.2014-8432.

Sørum H, Sunde M. Resistance to antibiotics in the normal flora of animals. Vet Res 2001;32(3-4):227-41. doi:10.1051/vetres:2001121.

Sunde M, Fossum K, Solberg A, Sørum H. Antibiotic resistance in Escherichia coli of the normal intestinal flora of swine. Microb Drug Resist 1998;4(4):289-99. doi: 10.1089/mdr.1998.4.289.

Liu J, Yu F, Call DR, Mills DA, Zhang A, Zhao Z. On-farm soil resistome is modified after treating dairy calves with the antibiotic florfenicol 2015;750:141694. doi: 10.1016/j.scitotenv.2020.141694.

Ferroni L, Albini E, Lovito C, Blasi F, Maresca C, Massacci FR, et al. Antibiotic consumption is a major driver of antibiotic resistance in calves raised on Italian cow-calf beef farms. Res Vet Sci 2022;145:71-81. doi:10.1016/j.rvsc.2022.01.010.

Rigobelo EC, Gamez HJ, Marin JM, Macedo C, Ambrosin JA, Ávila FA. Fatores de virulência de Escherichia coli isolada de bezerros com diarréia Vet Medicine • Arq. Bras Med Vet Zootec 2006;58(3) https://doi.org/10.1590/S0102-09352006000300003.

Gow SP, Waldner CL, Rajić A, McFall ME, Reid-Smith R. Prevalence of antimicrobial resistance in fecal generic Escherichia coli isolated in western Canadian cow-calf herds. Part I-beef calves. Can J Vet Res 2008;72(2):82-90.

Schroeder CM, Zhao C, DebRoy C, Torcolini J, Zhao S, White DG, et al. Antimicrobial resistance of Escherichia coli O157 isolated from humans, cattle, swine, and food. Appl Environ Microbiol 2002;68(2):576-81. doi: 10.1128/AEM.68.2.576-581.2002.

Barour D, Berghiche A, Boulebda N. Antimicrobial resistance of Escherichia coli isolates from cattle in Eastern Algeria. Vet World 2019;12(8):1195-1203. doi: 10.14202/vetworld.2019.1195-1203.

Schroeder CM, Zhao C, DebRoy C, Torcolini J, Zhao S, White DG, Wagner DD, McDermott PF, Walker RD, Meng J. Resistencia antimicrobiana de Escherichia coli O157 aislada de humanos, bovinos, porcinos y alimentos. Appl Environ Microbiol 2002;68(2):576-81. doi:10.1128/AEM.68.2.576-581.2002.

Barour D, Berghiche A, Boulebda N. Antimicrobial resistance of Escherichia coli isolates from cattle in Eastern Algeria. Vet World 2019;12(8):1195-1203. doi: 10.14202/vetworld.2019.1195-1203.

Formenti N, Martinelli C, Vitale N, Giovannini S, Salogni C, Tonni M, et al. Antimicrobial resistance of Escherichia coli in dairy calves: a 15-year retrospective analysis and comparison of treated and untreated animals. Animals (Basel) 2021;11(8):2328. doi:10.3390/ani11082328.

Watts RE, Totsika M, Challinor VL, Mabbett AN, Ulett GC, Voss JJ. De Schembri MA. Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infection and Immunity 2012;80(1): 333–344. https://doi.org/10.1128/IAI.05594-11.

Su Q, Guan T, Lv H. Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine. Scientific Reports 2016;6(1):24099. https://doi.org/10.1038/srep24099.

Subashchandrabose S, Mobley H LT. Host –Pathogen Interface 80 during urinary tract infection. Metallomics 2015;7(6):935–942. https://doi.org/10.1039/C4MT00329B.

Jia Y, Mao W, Liu B, Zhang S, Cao J, Xu X. Study on the drug resistance and pathogenicity of Escherichia coli isolated from calf diarrhea and the distribution of virulence genes and antimicrobial resistance genes. Front Microbiol 2022;3:992111. doi:10.3389/fmicb.2022.992111.

Shin SW, Shin MK, Jung M, Belaynehe KM, Yoo HS. Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle. Appl Environ Microbiol 2015;81(16):5560-6. doi: 10.1128/AEM.01511-15.

Published

2023-10-02

How to Cite

Cabrera González, M. A., Vásquez Pérez, H. V., Quilcate-Pairazamán, C., Bazán-Arce, J., & Cueva-Rodríguez, M. (2023). Assessment of antibiotic resistance in fecal samples from calves with diarrhea in the Cajamarca region, Peru. Revista Mexicana De Ciencias Pecuarias, 14(4), 782–795. https://doi.org/10.22319/rmcp.v14i4.6354
Metrics
Views/Downloads
  • Abstract
    1158
  • PDF (Español)
    280
  • PDF
    260
  • Texto completo (Español)
    556

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)