Quantile regression for prediction of complex traits in Braunvieh cattle using SNP markers and pedigree

Authors

  • Jonathan Emanuel Valerio-Hernández Universidad Autónoma Chapingo. Posgrado en Producción Animal. Carretera Federal México-Texcoco Km 38.5, 56227, Texcoco, Estado de México, México.
  • Paulino Pérez-Rodríguez Colegio de Postgraduados. Socio Economía Estadística e Informática. Carretera Federal México-Texcoco Km 36.5, 56230, Texcoco, Estado de México.
  • Agustin Ruíz-Flores Universidad Autónoma Chapingo. Posgrado en Producción Animal. Carretera Federal México-Texcoco Km 38.5, 56227, Texcoco, Estado de México, México.

DOI:

https://doi.org/10.22319/rmcp.v14i1.6182

Keywords:

Quantile regression, GBLUP, ssGBLUP

Abstract

Genomic prediction models generally assume that errors are distributed as normal, independent, and identically distributed random variables with zero mean and equal variance. This is not always true, in addition there may be phenotypes distant from the population mean, which are usually removed when making the prediction. Quantile regression (QR) deals with statistical aspects such as high dimensionality, multicollinearity and phenotypic distribution different from the normal one. The objective of this work was to compare QR using marker and pedigree information with alternative methods such as genomic best linear unbiased prediction (GBLUP) and single-step genomic best linear unbiased prediction (ssGBLUP) to analyze the birth (BW), weaning (WW) and yearling (YW) weights of Braunvieh cattle and simulated data with different degrees of asymmetry and proportion of outliers. The predictive capacity of the models was assessed by cross-validation. The predictive performance of QR both with marker information alone and with information of markers plus pedigree, with the actual dataset, was better than the GBLUP and ssGBLUP methodologies for WW and YW. For BW, GBLUP and ssGBLUP were better, however, only quantiles 0.25, 0.50 and 0.75 were used, and the BW distribution was not asymmetric. In the simulated data experiment, correlations between “true” marker effects and estimated effects, as well as “true” and estimated signal correlations were higher when QR was used compared to GBLUP. The advantages of QR were more noticeable with asymmetric distribution of phenotypes and with a higher proportion of outliers, as was the case with the simulated dataset.

Downloads

Download data is not yet available.

References

Koenker R, Bassett G. Regression quantiles. Econometrica 1978;46(1):33. https://doi.org/10.2307/1913643.

Briollais L, Durrieu G. Application of quantile regression to recent genetic and -omic studies. Hum Genet 2014;133(8):951–966. https://doi.org/10.1007/s00439-014-1440-6.

Wang L, Wu Y, Li R. Quantile regression for analyzing heterogeneity in ultra-high dimension. J Am Stat Assoc 2012;107(497):214-222. https://doi.org/10.1080/01621459.2012.656014.

Nascimento M, Nascimento ACC, Silva FF, Barili LD, Do Vale NM, Carneiro JE, Cruz CD, Carneiro PCS, Serão NVL. Quantile regression for genome-wide association study of flowering time-related traits in common bean. PLoS One 2018;13(1):1-14. https://doi.org/10.1371/journal.pone.0190303.

Fisher E, Schweiger R, Rosset S. Efficient construction of test inversion confidence intervals using quantile regression. J Comput Graph Stat 2016;29:140-148, http://arxiv.org/abs/1612.02300.

Logan JAR, Petrill SA, Hart SA, Schatschneider C, Thompson LA, Deater-Deckard K, de Thorne LS, Bartlett C. Heritability across the distribution: An application of quantile regression. Behav Genet 2012;42(2):256–267. https://doi.org/10.1007/s10519-011-9497-7.

Vinciotti V, Yu K. M-quantile regression analysis of temporal gene expression data. Stat Appl Genet Mol Biol 2009;8(1). https://doi.org/10.2202/1544-6115.1452.

Gianola D, Cecchinato A, Naya H, Schön CC. Prediction of complex traits: Robust alternatives to best linear unbiased prediction. Front Genet 2018;9:195. https://doi.org/10.3389/fgene.2018.00195.

Oliveira GF, Nascimento ACC, Nascimento M, Sant’Anna IdeC, Romero JV, Azevedo CF, Bhering LL, Moura ETC. Quantile regression in genomic selection for oligogenic traits in autogamous plants: A simulation study. PLoS One 2021;16(1):1-12. https://doi.org/10.1371/journal.pone.0243666.

Pérez-Rodríguez P, Montesinos-López OA, Montesinos-López A, Crossa J. Bayesian regularized quantile regression: A robust alternative for genome-based prediction of skewed data. Crop J 2020;8(5):713-722. https://doi.org/10.1016/j.cj.2020.04.009.

Nascimento M, e Silva FF, de Resende MDV, Cruz CD, Nascimento ACC, Viana JMS, Azebedo CF, Barroso LMA. Regularized quantile regression applied to genome-enabled prediction of quantitative traits. Genet Mol Res 2017;16(1). https://doi.org/10.4238/GMR16019538.

Barroso LMA, Nascimento M, Nascimento ACC, Silva FF, Serão NVL, Cruz, CD, et al. Regularized quantile regression for SNP marker estimation of pig growth curves, J. Anim Sci Biotechnol 2017;8:59. https://doi.org/10.1186/s40104-017-0187-z.

Nascimento AC, Nascimento M, Azevedo C, Silva F, Barili L, Vale N, et al. Quantile regression applied to genome-enabled prediction of traits related to flowering time in the common bean. Agronomy 2019;9(12):1-11. https://doi.org/10.3390/agronomy9120796.

López-Cruz M, Crossa J, Bonnett D, Dreisigacker S, Poland J, Jannink JL, Singh RP, Autrique E, de los Campos G. Increased prediction accuracy in wheat breeding trials using a Marker × Environment interaction genomic selection model. G3 Genes Genom Genet 2015;5(4):569–582. https://doi.org/10.1534/g3.114.016097.

Pérez-Rodríguez P, Crossa J, Rutkoski J, Poland J, Singh R, Legarra A, et al. Single-step genomic and Pedigree Genotype × Environment interaction models for predicting wheat lines in international environments. Plant Genome 2017;10(2). https://doi.org/10.3835/plantgenome2016.09.0089.

Christensen O, Lund M. Genomic relationship matrix when some animals are not genotyped. Genet Sel Evol 2010;42(2):1-8. http://www.gsejournal.org/content/42/1/2.

Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci 2010;93(2):743-752. https://doi.org/10.3168/jds.2009-2730.

Crossa J, Pérez P, de los Campos G, Mahuku G, Dreisigacker S, Magorokosho C. Genomic selection and prediction in plant breeding. J Crop Improv 2011;25(3):239-261. https://doi.org/10.1080/15427528.2011.558767.

Arnold BC, Beaver RJ. Hidden truncation models. Shankhya. Indian J Stat 2000;62(1):23–35. http://www.jstor.org/stable/25051286. Accessed Jul 6, 2022.

Montesinos-López A, Montesinos-López OA, Villa-Diharce ER, Gianola D, Crossa J. A robust Bayesian genome-based median regression model. Theor Appl Genet 2019;132(5):1587-1606. https://doi.org/10.1007/s00122-019-03303-6.

Pérez-Rodríguez P, Villaseñor-Alva JA. On testing the skew normal hypothesis. J Stat Plan Inference 2010;140(11):3148-3159. https://doi.org/10.1016/j.jspi.2010.04.013.

Pérez-Rodríguez P, Acosta-Pech R, Pérez-Elizalde S, Cruz CV, Espinosa JS, Crossa J. A Bayesian genomic regression model with skew normal random errors. G3 Genes|Genom|Genet 2018;8(5):1771–1785. https://doi.org/10.1534/g3.117.300406.

Domínguez-Viveros J. Parámetros genéticos en la varianza residual de variables de comportamiento en toros de lidia. Arch Zoot 2020;69(267):354–358. https://doi.org/10.21071/az.v69i267.5354.

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit. J R Stat Soc: Series B Stat Methodol 2002;64(4):583–639. https://doi.org/10.1111/1467-9868.00353.

R Core Team. R: A language and environment for statistical computing. R Foundation for statistical computing 2021. Vienna, Austria. https://www.R-project.org/.

Pérez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package. Genetics 2014;198(2):483-495. https://doi.org/10.1534/genetics.114.164442.

Mendes dos Santos P, Nascimento ACC, Nascimento M, Fonseca e Silva F, Azevedo CF, Mota RR, et al. Use of regularized quantile regression to predict the genetic merit of pigs for asymmetric carcass traits. Pesqui Agropecu Bras 2018;53(9):1011–1017. https://doi.org/10.1590/S0100-204X2018000900004.

Gianola D. Priors in whole-genome regression: The Bayesian alphabet returns. Genetics 2013;194(3):573-596. https://doi.org/10.1534/genetics.113.151753.

de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 2013;193(2):327-345. https://doi.org/10.1534/genetics.112.143313.

Ferragina A, de los Campos G, Vazquez AI, Cecchinato A, Bittante G. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data. J Dairy Sci 2015;98(11):8133-8151. https://doi.org/10.3168/jds.2014-9143.

Published

2022-12-27

How to Cite

Valerio-Hernández, J. E., Pérez-Rodríguez, P., & Ruíz-Flores, A. (2022). Quantile regression for prediction of complex traits in Braunvieh cattle using SNP markers and pedigree. Revista Mexicana De Ciencias Pecuarias, 14(1), 172–189. https://doi.org/10.22319/rmcp.v14i1.6182
Metrics
Views/Downloads
  • Abstract
    698
  • PDF (Español)
    302
  • PDF
    285
  • Texto completo (Español)
    495

Metrics

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)