Concentrado de proteína de papa: una posible alternativa al uso de antibióticos en las dietas para lechones destetados. Revisión

Autores/as

  • Erick Alejandro Parra Alarcón Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia Maestría en Ciencias de la Producción y de la Salud Animal. Ciudad de México, México. http://orcid.org/0000-0002-1826-6910
  • Teresita de Jesús Hijuitl Valeriano Universidad Autónoma de Querétaro http://orcid.org/0000-0002-8716-2971
  • Gerardo Mariscal Landín Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia Maestría en Ciencias de la Producción y de la Salud Animal. Ciudad de México, México. Universidad Autónoma de Querétaro. Facultad de Ciencias Naturales. Maestría en Salud y Producción Animal Sustentable. Av. De las Ciencias s/n. Querétaro, Querétaro, México. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal. Ajuchitlán, Querétaro, México. http://orcid.org/0000-0001-6684-4765
  • Tércia Cesária Reis de Souza Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia Maestría en Ciencias de la Producción y de la Salud Animal. Ciudad de México, México. Universidad Autónoma de Querétaro. Facultad de Ciencias Naturales. Maestría en Salud y Producción Animal Sustentable. Av. De las Ciencias s/n. Querétaro, Querétaro, México. http://orcid.org/0000-0002-9025-4332

DOI:

https://doi.org/10.22319/rmcp.v13i2.5980

Palabras clave:

Lechones, Destete, Péptidos antimicrobianos, Inhibidores de proteasas, Papa

Resumen

El periodo del destete es crítico en la vida de los lechones y puede generar trastornos gastrointestinales y un bajo crecimiento, que son aminorados con el uso de antibióticos en los alimentos iniciadores. Sin embargo, debido a la necesidad de eliminar los antibióticos de la nutrición animal, se mencionan algunas posibles alternativas a su uso. En la presente revisión bibliográfica, se describen los péptidos antimicrobianos y compuestos inhibidores de proteasas de origen vegetal, sobre todo los provenientes de la papa, que han sido tradicionalmente reconocidos por su potencial aplicación biomédica y actividad contra bacterias patógenas y hongos. Se revisaron las características y aplicaciones del concentrado de proteína de papa (CPP) proveniente de la industria del almidón, que se distingue por su perfil de aminoácidos y alta digestibilidad. Se destacan en el CPP moléculas que están presentes en la fracción proteica y que pueden contribuir a la salud intestinal de los lechones, por lo que se perfila como un ingrediente con potencial para ser utilizado en dietas libres de antibióticos. Sin embargo, es necesario tener más información bibliográfica sobre el CPP para verificar si la respuesta sanitaria es consistente o no, y recomendar su inclusión en las dietas iniciadoras para lechones recién destetados como una alternativa a los antibióticos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Erick Alejandro Parra Alarcón, Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia Maestría en Ciencias de la Producción y de la Salud Animal. Ciudad de México, México.

Estudiante de la Maestría en Ciencias de la Producción y de la Salud Animal. Facultad de Medicina Veterinaria y Zootecnia. Universidad Nacional Autónoma de México.

Teresita de Jesús Hijuitl Valeriano, Universidad Autónoma de Querétaro

Estudiante de la Maestría en Salud y Producción Animal Sustentable de la Facultad de Ciencias Naturales de la Universidad Autónoma de Querétaro.

Gerardo Mariscal Landín, Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia Maestría en Ciencias de la Producción y de la Salud Animal. Ciudad de México, México. Universidad Autónoma de Querétaro. Facultad de Ciencias Naturales. Maestría en Salud y Producción Animal Sustentable. Av. De las Ciencias s/n. Querétaro, Querétaro, México. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal. Ajuchitlán, Querétaro, México.

Investigador del CENID Fisiología y Mejoramiento Animal, INIFAP

Tércia Cesária Reis de Souza, Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia Maestría en Ciencias de la Producción y de la Salud Animal. Ciudad de México, México. Universidad Autónoma de Querétaro. Facultad de Ciencias Naturales. Maestría en Salud y Producción Animal Sustentable. Av. De las Ciencias s/n. Querétaro, Querétaro, México.

Profesora investigadora. Maestría en Salud y Producción Animal Sustentable de la Facultad de Ciencias Naturales de la Universidad Autónoma de Querétaro

Citas

Buddington RK, Sangild PT, Hance B, Huang EY, Black DD. Prenatal gastrointestinal development in the pig and responses after preterm birth. J Anim Sci 2012;90(suppl 4):290-298.

Pohl CS, Medland JE, Moeser AJ. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications. Am J Physiol Gastrointest Liver Physiol 2015;309(12):927- 941.

Maradiaga N, Zeineldin M, Aldridge B, Lowe J. Influence of maternal microbial communities on the mucosal microbiome of neonatal pigs. AASV 2014;2014(1):1–39.

Mach N, Berri M, Estellé J, Levenez F, Lemonnier CD, Leplant CC, et al. Early life establishment of the swine gut microbiome and impact on host phenotypes. Environ Microbiol Rep 2015;7(3):554-569.

McCormack UM, Curião T, Buzoianu SG, Prieto ML, Ryan T, Varley P, et al. Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl Environ Microbiol 2017;83(15):1–16.

Insuasti ASG, Collazos DV, Argote F. Efecto de la dieta y edad del destete sobre la fisiología digestiva del lechón. Rev Fac Cienc Agrar 2008;6(1):32-41.

Moeser AJ, Pohl SC, Rajput M. Weaning stress and gastrointestinal barrier development: implications for lifelong gut health in pigs. Anim Nutr 2017;3(4):313-321.

Campbell JM, Crenshaw DJ, Polo J. The biological stress of early weaned piglets. J Anim Sci Biotechnol 2013;4(1):1-4.

Rhouma M, Fairbrother JM, Beaudry F, Letellier A. Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Vet Scand 2017;59(1):2-19.

Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends Microbiol 2017;25(10):851-873.

Puskle J. Feed- and feed additives-related aspects of gut health and development in weanling pigs. J Anim Sci Biotechnol 2013;4(1):2-7.

Thacker PA. Alternatives to antibiotics as growth promoters for use in swine production: a review. J Anim Sci Biotechnol 2013;4(35):1–12.

Wu S, Zhang F, Huang Z, Liu H, Xie C, Zhang J, et al. Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides 2012;35(2):225–230.

Kiarie E, Voth C, Wey D, Zhu C, Vingerhoeds P, Borucki S, et al. Comparative efficacy of antibiotic growth promoter and benzoic acid on growth performance, nutrient utilization and indices of gut health in nursery pigs fed corn-wheat-soybean meal diet. Can J Anim Sci 2018;98 (4):868–874.

Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 2004;10(12):122-129.

Zhao J, Harper AF, Estienne MJ, Webb JKE, McElroy AP, Denbow DM. Growth performance and intestinal morphology responses in early weaned pigs to supplementation of antibiotic-free diets with an organic copper complex and spray-dried plasma protein in sanitary and nonsanitary environments. J Anim Sci 2007;85(5):1032-1310.

Yu M, Li Z, Chen W, Wang G, Rong T, Liu Z, et al. Hermetia illucens larvae as a fishmeal replacement alters intestinal specific bacterial populations and immune homeostasis in weanling piglets. J Anim Sci 2020;98(3):1–13.

Culp E, Wright G. Bacterial proteases, untapped antimicrobial drug targets. J Antibiot 2017;17(4):366–377.

Vondruskova H, Slamova R, Trckova M, Zraly Z, Pavlik I. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: a review. Vet Med 2010;55(5):199–224.

Oliveira ER, Silva CA, Da Castro-Gómez RJH, Lozano AP, Gavioli DF, Frietzen J, et al. Chito-oligosaccharide as growth promoter replacement for weaned piglets: performance, morphometry, and immune system. Semin Cienc Agrar 2017;38(5):3253-3269.

Crenshaw JD, Campbell JM, Polo J, Stein HH. Effects of specialty proteins as alternatives to bovine or porcine spray-dried plasma in non-medicated diets fed to weaned pigs housed in an unsanitary environment. Transl Anim Sci 2017;1(3):333–342.

Cotten B, Ragland D, Thomson JE, Adeola O. Amino acid digestibility of plant protein feed ingredients for growing pigs. J Anim Sci 2016;94(3):1073-1082.

Torrallardona D. Spray dried animal plasma as an alternative to antibiotics in weanling pigs. A review. Asian-Aust J Anim Sci 2010;23(1):131-148.

Pérez-Bosque A, Polo J, Torrallardona D. Spray dried plasma as an alternative to antibiotics in piglet feeds, mode of action and biosafety. Porc Health Manag 2016;2(1):1-10.

Benko-Iseppon M, Galdino SL, Calsa T Jr, Kido A, Tossi A, Belarmino C, Crovella S. Overview on plant antimicrobial peptides. Curr Protein Pept Sci 2010;11(3):181-188.

Tam, P, Wang S, Wong H, Tan L. Antimicrobial Peptides from Plants. Pharmaceuticals 2015;8(4):711–757.

Bártová V, Bárta J, Vlačihová A, Šedo O, Zdráhal Z, Konečná H, et al. Proteomic characterization and antifungal activity of potato tuber proteins isolated from starch production waste under different temperature regimes. Appl Microbiol Biotechnol 2018;102(24):10551-10560.

Jin Z, Yang YX, Choi JY, Shinde PL, Yoon SY, Hahn TW, Lim HT et al. Effects of potato (Solanum tuberosum L. cv. Golden valley) protein having antimicrobial activity on the growth performance, and intestinal microflora and morphology in weanling pigs. Anim Feed Sci Technol 2008;140(1):139–154.

Islas–Flores I, Minero–García Y, James AC. Proteínas contra las infecciones de las plantas. Ciencia 2005;3(1):64-74.

Contreras P, Diaz C, Taron D. Ciclótidos, proteínas circulares producidas por plantas con potencial farmacológico. Rev Cubana Farm 2015;49(2):84-93.

Marshall SH, Arenas G. Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Elect J Biotechn 2003;6(3):271-284.

Jin Z, Yang YX, Choi JY, Shinde PL, Yoon SY, Hahn TW, Lim HT, et al. Potato (Solanum tuberosum L. cv. Gogu valley) protein as a novel antimicrobial agent in weanling pigs. J Anim Sci 2008;86(7):1562-1572.

Jin Z, Shinde PL, Yang YX, Choi JY, Yoon SY, Hahn TW, et al. Use of refined potato (Solanum tuberosum L. cv. Gogu valley) protein as an alternative to antibiotics in weanling pigs. Livest Sci 2009;124(1-3):26–32.

Waglay A, Karboune S, Alli I. Potato protein isolates: Recovery and characterization of their properties. Food Chem 2014;142(1):373–382.

Bártová V, Bárta J, Jarošová M. Antifungal and antimicrobial proteins and peptides of potato (Solanum tuberosum L.) tubers and their applications. Appl Microbiol Biotechnol 2019;103(14):5533–5547.

Waglay A, Karboune S. Potato Proteins Functional Food Ingredients. In: Jaspreet Singh, Lovedeep Kaur editors. Advances in Potato Chemistry and Technology. 2 ed. Academic Press, London, UK: Elsevier Books; 2016:75–104.

Kim JY, Park SC, Kim MH, Lim HT, Park Y, Hahm KS. Antimicrobial activity studies on a trypsin–chymotrypsin protease inhibitor obtained from potato. Biochem Biophys Res Commun 2005;330(3): 921– 927.

Cisneros JS, Cotabarren J, Parisi MG, Vasconcelos MW, Obregón WD. Purification and characterization of a novel trypsin inhibitor from Solanum tuberosum subsp. andigenum var. overa: Study of the expression levels and preliminary evaluation of its antimicrobial activity. Int J Biol Macromol 2020;158(1):1279-1287.

Kovalskaya N, Hammond RW. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr Purif 2009;63(1):12–17.

Segura A, Moreno M, Madueño F, Molina A, García-Olmedo F. Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 1999;12(1):16-23.

Berrocal-Lobo M, Segura A, Moreno M, López G, Garcıa-Olmedo F, Molina A. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 2002;128(3):951-961.

Mu TH, Tan SS, Xue YL. The amino acid composition, solubility and emulsifying properties of sweet potato protein. Food Chem 2009;112(4):1002–1005.

Wijesinha-Bettoni R, Mouillé B. The contribution of potatoes to global food security, nutrition and healthy diets. Am J Potato Res 2019;96(2):139–149.

Taciak M, Tuśnio A, Pastuszewska B. The effects of feeding diets containing potato protein concentrate on reproductive performance of rats and quality of the offspring. J Anim Physiol Anim Nutr 2011;95(5):556-563.

Pastuszewska B, Tuśnio A, Taciak M, Mazurczyk W. Variability in the composition of potato protein concentrate produced in different starch factories—A preliminary survey. Anim Feed Sci Tech 2009;154(3-4):260–264.

Wojnowska I, Poznanski S y Bednarski W. Processing of potato protein concentrates and their properties. J Food Sci 1982;47(1):167-172.

Tuśnio A, Pastuszewska B, Święch, Taciak M. Response of young pigs to feeding potato protein and potato fibre - nutritional, physiological and biochemical parameters. J Anim Feed Sci 2011;20(3):361–378.

Sardi L, Paganelli R, Parisini P, Simioli M, Martelli G. The replacement of fishmeal by plant proteins in piglet production. Ital J Anim Sci 2005;4(suppl. 2):449-451.

Froidmont E, Wathelet B, Oger R, Romnée JM, Colinet A, Cloet D, et al. Nutritional properties of potato protein concentrate compared with soybean meal as the main protein source in feed for the double-muscled Belgian Blue bull. Animal 2008;3(2):200-208.

Refstie S, Tiekstra HA. Potato protein concentrate with low content of solanidine glycoalkaloids in diets for Atlantic salmon (Salmo salar). Aquaculture 2003;216(1-4):283–298.

Kerr CA, Goodband RD, Smith JW, Musser RE, Bergström JR, Nessmith Jr WB, et al. Evaluation of potato proteins on the growth performance of early-weaned pigs. J Anim Sci 1998;76(12):3024–3033.

Reis de Souza TC, Aguilera AB, Rubio SR, Machado WG, Escobar KG, Gómez JGG, et al. Growth performance, diarrhoea incidence, and nutrient digestibility in weaned piglets fed an antibiotic-free diet with dehydrated porcine plasma or potato protein concentrate. Ann Anim Sci 2019;19(1):59–172.

Publicado

16.05.2022

Cómo citar

Parra Alarcón, E. A., Hijuitl Valeriano, T. de J., Mariscal Landín, G., & Reis de Souza, T. C. (2022). Concentrado de proteína de papa: una posible alternativa al uso de antibióticos en las dietas para lechones destetados. Revisión. Revista Mexicana De Ciencias Pecuarias, 13(2), 510–524. https://doi.org/10.22319/rmcp.v13i2.5980
Metrics
Vistas/Descargas
  • Resumen
    982
  • PDF
    714
  • PDF
    234
  • Texto completo
    361

Número

Sección

Revisiones bibliográficas

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a

<< < 1 2