Ultrasonography and physiological description of essential events for reproductive management in dairy cattle. Review

Autores/as

  • María Elena Torres-Lechuga Ex becaria CONACYT
  • Juan González-Maldonado Universidad Autónoma de Baja California, Instituto de Ciencias Agrícolas, Carretera a Delta S/N, C.P. 21705, Ejido Nuevo León, Baja California, México. https://orcid.org/0000-0003-3863-786X

DOI:

https://doi.org/10.22319/rmcp.v13i2.5789

Palabras clave:

Corpus luteum, Embryo, Follicle, Fetus

Resumen

The ultrasound allows to visualize the female reproductive tract and helps to understand some of the most relevant reproductive events such as follicular and corpus luteum development, ovulation, pregnancy diagnosis, uterine infections, embryo and fetal growth, among others. Nowadays, there is a massive amount of information regarding the physiology and ultrasonography of the reproductive events mentioned above. However, the overwhelming number of available papers review technical aspects of ultrasonography, physiology and reproductive management separately. Therefore, the objective of the present review is to merge a physiological description with reproductive management and technical aspects of original ultrasound pictures of the most relevant reproductive events in dairy cattle to promote ultrasound use during dairy cattle reproductive management by practitioners and researchers.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Cabrera VE. Economics of fertility in high-yielding dairy cows on confined TMR systems. Animal 2014;8(S1):211-221. doi:10.1017/S1751731114000512.

Kähn W, Leidl W. In: Taverne MAM, Willemse AH. Diagnostic ultrasound and animal reproduction. Dordrecht, Netherlands; 1989:53-65.

Rajamahendran R,Ambrose DJ, Burton B. Clinical and research applications of real-time ultrasonography in bovine reproduction: a review. Can Vet J 1994;35(9):563-572.

Ribadu AY, Nakao T. Bovine reproductive ultrasonography: a review. J Reprod Dev; 1994;45:13-28. https://doi.org/10.1262/jrd.45.13.

DesCoteaux L, Gnemmi G, Colloton J. Ultrasonography of the bovine female genital tract. Vet Clin Food Anim 2009;25(3):733-752. https://doi.org/10.1016/j.cvfa.2009.07.009.

Quintela LA, Barrio M, Peña AL, Becerra JJ, Cainzos J, Herradón PG, Díaz C. Use of ultrasound in the reproductive management of dairy cattle. Reprod Dom Anim 2012; 47(s3):34-44. 10.1111/j.1439-0531.2012.02032.x .

Perry GA, Pas, Cushman RA. Use of ultrasonography to make reproductive management decisions. The Prof Anim Sci 2016;32(2):154-161. https://doi.org/10.15232/pas.2015-01446.

Fortune JE, Rivera GM, Evans AC, Turzillo AM. Differentiation of dominant versus subordinate follicles in cattle. Biol Reprod 2001;65(3):648-54. https://doi.org/10.1095/biolreprod65.3.648.

Gong JG, Campbell BK, Webb R. Defining the gonadotrophin requirement for the selection of a single dominant follicle in cattle. Reprod Fertil Dev 2019;32(3):322-34. 10.1071/RD19060.

Adams GP, Jaiswal R, Singh J, Malhi P. Progress in understanding ovarian follicular dynamics in cattle. Theriogenology 2008; 69 (1):72-80. https://doi.org/10.1016/j.theriogenology.2007.09.026.

Ginther OJ. The theory of follicle selection in cattle. Domest Anim Endocrinol 2016;57:85-99. 10.1016/j.domaniend.2016.06.002.

Sartori R, Fricke PM, Ferreira JC, Ginther OJ, Wiltbank MC. Follicular deviation and acquisition of ovulatory capacity in bovine follicles. Biol Reprod. 2001;65(5):1403-1409. https://doi.org/10.1095/biolreprod65.5.1403.

Perry GA, Smith MF, Lucy MC, Green JA, Parks TE, MacNeil MD, et al. Relationship between follicle size at insemination and pregnancy success. Proc. Natl Acad Sci USA. 2005;102(14):5268-5273. https://doi.org/10.1073/pnas.0501700102.

Colazo MG, Behrouzi A, Ambrose DJ, Mapletoft RJ. Diameter of the ovulatory follicle at timed artificial insemination as a predictor of pregnancy status in lactating dairy cows subjected to GnRH-based protocols. Theriogenology 2015;84(3):377-383. 10.1016/j.theriogenology.2015.03.034.

Mussard ML, Burke CR, Behlke EJ, Gasser CL, Day ML. Influence of premature induction of a luteinizing hormone surge with gonadotropin-releasing hormone on ovulation, luteal function, and fertility in cattle. J Anim Sci 2007;85(3):937-943. 10.2527/jas.2006-592.

Colazo MG, Martínez MF, Kastelic JP, Mapletoft RJ. Effects of dose and route of administration of cloprostenol on luteolysis, estrus and ovulation in beef heifers. Anim Reprod Sci 2002(1-2);72:47-62. https://doi.org/10.1016/S0378-4320(02)00087-8.

White FJ, Wettemann RP, Looper ML, Prado TM, Morgan GL. Seasonal effects on estrous behavior and time of ovulation in nonlactating beef cows. J Anim Sci 2002; 80(12):3053-3059. https://doi.org/10.2527/2002.80123053x.

López-Gatius F, Garcia-Ispierto I, Hunter RHF. Twin pregnancies in dairy cattle: Observations in a large herd of Holstein-Friesian dairy cows. Animals 2020;10(11):1-9. https://doi.org/10.3390/ani10112165.

López-Gatius F, Andreu-Vázquez C, Mur-Novales R, Cabrera VE, Hunter RHF. The dilemma of twin pregnancies in dairy cattle. A review of practical prospects. Liv Sci 2017;197:12-16. https://doi.org/10.1016/j.livsci.2017.01.001.

García-Guerra A, Kirkpatrick BW, Wiltbank MC. Follicular waves and hormonal profiles during the estrous cycle of carriers and non-carriers of the Trio allele, a major bovine gene for high ovulation and fecundity. Theriogenology 2017;100:100-113. 10.1016/j.theriogenology.2017.05.029.

López-Gatius F, Hunter R. Puncture and drainage of the subordinate follicles at timed artificial insemination prevents the risk of twin pregnancy in dairy cows. Reprod Domest Anim 2018;53:213-216. 10.1111/rda.13094.

López-Gatius F, López-Béjar M, Fenech M, Hunter RH. Ovulation failure and double ovulation in dairy cattle: risk factors and effects. Theriogenology 2005;63(5):1298-1307. https://doi.org/10.1016/j.theriogenology.2004.06.010.

Morris MJ, Kaneko K, Walker SL, Jones DN, Routly JE, Smith RF, Dobson H. Influence of lameness on follicular growth, ovulation, reproductive hormone concentrations and estrus behavior in dairy cows. Theriogenology 2011;76(4):658-668. 10.1016/j.theriogenology.2011.03.019.

Hatler TB, Hayes SH, Laranja da Fonseca LF, Silvia WJ. Relationship between endogenous progesterone and follicular dynamics in lactating dairy cows with ovarian follicular cysts. Biol Reprod 2003;69(1):218-223. https://doi.org/10.1095/biolreprod.102.012179.

Calder MD, Salfen BE, Bao B, Youngquist RS, Garverick HA. Administration of progesterone to cows with ovarian follicular cyst results in a reduction in mean LH and LH pulses frequency and initiates ovulatory follicular growth. J Anim Sci 1999;77(11):3037-3042. 10.2527/1999.77113037x.

Kaneko H, Todoroki J, Noguchi J, Kikuchi K, Mizoshita K, Kubota C. Yamakuchi H. Perturbation of estradiol-feedback control of luteinizing hormone secretion by immunoneutralization induces development of follicular cysts in cattle. Biol Reprod 2002;67(6):1840-1845. https://doi.org/10.1095/biolreprod.102.007591.

Gümen A, Sartori R, Costa FM, Wiltbank MC. A GnRH/LH surge without subsequent progesterone exposure can induce development of follicular cysts. J Dairy Sci 2002;85(1):43-50. https://doi.org/10.3168/jds.S0022-0302(02)74051-4.

Douthwaite R, Dobson H. Comparison of different methods of diagnosis cyst ovarian disease in cattle and an assessment of its treatment with a progesterone-releasing intravaginal device. Vet Rec 2000;147(13):355-359. http://dx.doi.org/10.1136/vr.147.13.355.

Ambrose DJ, Schmitt EJP, Lopes FL, Mattos RC, Thatcher WW. Ovarian and endocrine responses associated with the treatment of cystic ovarian follicles in dairy cows with gonadotropin releasing hormone and prostaglandin F2α, with or without exogenous progesterone. Can Vet J 2004;45(11):931-937.

Abedel-Majed MA, Romereim SM, Davis JS, Cupp AS. Perturbations in lineage specification of granulosa and theca cells may alter corpus luteum formation and function. Front Endocrinol 2019;10:1-10. 10.3389/fendo.2019.00832.

Kastelic JP, Pierson RA, Ginther OJ. Ultrasonic morphology of corpora lutea and central luteal cavities during the estrous cycle and early pregnancy in heifers. Theriogenology 1990;34(3): 487-498. https://doi.org/10.1016/0093-691X(90)90006-F.

Taylor C, Rajamahendran R. Follicular dynamics and corpus luteum growth and function in pregnant versus nonpregnant cows. J Dairy Sci 1991;74(1):115-123. https://doi.org/10.3168/jds.S0022-0302(91)78151-4.

Siqueira LG, Torres CA, Amorim LS, Souza ED, Camargo LS, Fernandes CA, Viana JHM. Interrelationships among morphology, echotexture, and function of the bovine corpus luteum during the estrous cycle. Anim Reprod Sci 2009;115(1-4):18-28. https://doi.org/10.1016/j.anireprosci.2008.11.009.

Singh J, Pierson RA, Adams GP. Ultrasound image attributes of the bovine corpus luteum: structural and functional correlates. J Reprod Fertil 1997;109(1):35-44. 10.1530/jrf.0.1090035.

Perez-Marin C. Formation of corpora lutea and central luteal cavities and their relationship with plasma progesterone levels and other metabolic parameters in dairy cattle. Reprod Domest Anim 2009;44:384-389. 10.1111/j.1439-0531.2007.01021.x

Kito S, Okuda K, Miyazawa K, Sato K. Study on the appearance of the cavity in the corpus luteum of cows by using ultrasonic scanning. Theriogenology 1986;25(2):325-333. https://doi.org/10.1016/0093-691X(86)90068-3.

Lüttgenau J, Ulbrich SE, Beindorff N, Honnens A, Herzog K, Bollwein H. Plasma progesterone concentrations in the mid-luteal phase are dependent on luteal size, but independent of luteal blood flow and gene expression in lactating dairy cow. Anim Reprod Sci 2011(1-4);125:20-29. https://doi.org/10.1016/j.anireprosci.2011.02.002.

Rizos D, Scully S, Kelly AK, Ealy AD, Moros R, Duffy P, Al-Naib A, Forde N, Lonergan P. Effects of human chorionic gonadotrophin administration on day 5 after oestrus on corpus luteum characteristics, circulating progesterone and conceptus elongation in cattle. Reprod Fertil Dev 2012;24(3):472-481. 10.1071/RD11139.

Cummins SB, Lonergan P, Evans AC, Butler ST. Genetic merit of fertility traits in Holstein cows: II. Ovarian follicular and corpus luteum dynamics, reproductive hormones, and estrus behavior. J Dairy Sci 2012;95(7):3698-36710. https://doi.org/10.3168/jds.2011-4976.

Moore SG, Scully S, Browne JA, Fair T, Butler ST. Genetic merit for fertility traits in Holstein cows: V. Factors affecting circulating progesterone concentrations. J Dairy Sci 2014;97(2-3):5543-5557. https://doi.org/10.3168/jds.2014-8133.

Gómez-Seco C, Alegre B, Martínez-Pastor F, Prieto JG, González-Montaña JR, Alonso ME, Domínguez JC. Evolution of the corpus luteum volume determined ultrasonographically and its relation to the plasma progesterone concentration after artificial insemination in pregnant and non-pregnant dairy cows. Vet Res Commun 2017;41(3):183-188. 10.1007/s11259-017-9685-x.

Battocchio M, Gabai G, Mollo A, Veronesi MC, Soldano F, Bono G. Cairoli F. Agreement between ultrasonographic classification of the CL and plasma progesterone concentration in dairy cows. Theriogenology 1999;51(6):1059-1069. https://doi.org/10.1016/S0093-691X(99)80011-9.

Kaneko K, Takagi N. Accurate ultrasonographic prediction of progesterone concentrations greater than 1 ng/ml in Holstein lactating dairy cows. Reprod Domest Anim.2014;49(6):985-988. https://doi.org/10.1017/S0022029908003610.

Hassan M, Arshad U, Bilal M, Sattar A, Avais M, Bollwein H, Ahmad N. Luteal blood flow measured by Doppler ultrasonography during the first three weeks after artificial insemination in pregnant and non-pregnant Bos indicus dairy cows. J Reprod Dev 2019;65(1):29-36. 10.1262/jrd.2018-084.

Wenzinger B, Bleul U. Effect of a prostaglandin F2α analogue on the cyclic corpus luteum during its refractory period in cows. BMC Vet Res 2012;8:220. 10.1186/1746-6148-8-220.

Répási A, Beckers JF, Sulon J, Perényi Z, Reiczigel J, Szenci O. Effect of different doses of prostaglandin on the area of corpus luteum, the largest follicle and progesterone concentration in the dairy cow. Reprod Domest Anim 2003;38(6):423-428. 10.1046/j.1439-0531.2003.00433.x.

Levy N, Kobayashi S, Roth Z, Wolfenson D, Miyamoto A, Meidan R. Administration of prostaglandin F (2 alpha) during the early bovine luteal phase does not alter the expression of ET-1 and of its type A receptor: a possible cause for corpus luteum refractoriness. Biol Reprod 2000;63(2):377-382. 10.1095/biolreprod63.2.377.

Yadav VK, Lakshmi G, Medhamurthy R. Prostaglandin F2alpha-mediated activation of apoptotic signaling cascades in the corpus luteum during apoptosis: involvement of caspase-activated DNase. J Biol Chem 2005;280:10357-10367. 10.1074/jbc.M409596200.

Pate JL, Landis Keyes P. Immune cells in the corpus luteum: friends or foes?. Reproduction. 2001;122(5):665-676. 10.1530/rep.0.1220665.

Bazer FW. Pregnancy recognition signaling mechanisms in ruminants and pigs. J Anim Sci Biotechnol 2013;4(1):23. https://doi.org/10.1186/2049-1891-4-23.

Curran S, Pierson RA, Ginther OJ. Ultrasonographic appearance of the bovine conceptus from days 20 through 60. J Am Vet Med Assoc 1986(10);189:1295-1302.

Fricke PM, Ricci A, Giordano JO, Carvalho PD. Methods for and implementation of pregnancy diagnosis in dairy cows. Vet Clin North Am Food Anim Prod 2016;32(1):165-180. 10.1016/j.cvfa.2015.09.006.

Diskin MG, Waters SM, Parr MH, Kenny DA. Pregnancy losses in cattle: potential for improvement. Reprod Fertil Dev 2016;28(1-2):83-93. 10.1071/RD15366.

Wiltbank MC, Baez GM, Garcia-Guerra A, Toledo MZ, Monteiro PL, Melo LF, et al. Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 2016;86(1):239-253. https://doi.org/10.1016/j.theriogenology.2016.04.037.

Lonergan P, Fair T, Forde N, Rizos D. Embryo development in dairy cattle. Theriogenology 2016(1);86:270-277. 10.1016/j.theriogenology.2016.04.040.

Kramer RW, Smith DR, Rupp GR, Griffin DD, Funston RN. Estimation of calving date in beef cattle with real-time ultrasound. Prof Anim Sci 2016;32(3):322-327. https://doi.org/10.15232/pas.2015-01478.

Lawrence KE, Adeyinka FD, Laven RA, Jones G. Assessment of the accuracy of estimation of gestational age in cattle from placentoma size using inverse regression. N Z Vet J 2016;64(4):248-252. 10.1080/00480169.2016.1157050.

Quintela LA, Becerra JJ, Pérez-Marín CC, Barrio M, Cainzos J, Prieto A, Díaz C, Herradón PG. Fetal gender determination by first-trimester ultrasound in dairy cows under routine herd management in Northwest Spain. Anim Reprod Sci 2011;125(1-4): 13-9. https://doi.org/10.1016/j.anireprosci.2011.02.022 .

Sheldon IM, Williams EJ, Miller AN, Nash DM, Herath S. Uterine diseases in cattle after parturition. Vet J 2008;176(1):115-121. 10.1016/j.tvjl.2007.12.031.

Carvalho PD, Souza AH, Sartori R, Hackbart KS, Dresch AR, Vieira LM. et al. Effects of deep-horn AI on fertilization and embryo production in superovulated cows and heifers. Theriogenology 2013;80 (9):1074-1081. 0.1016/j.theriogenology.2013.08.008.

Barajas-Merchana JL, Hernández-Ceróna J, García-Alfonso A, Martínez-Bárcenasa E, Juárez-Lópeza NO, Bedolla-Alva AM, de la Sota RL. Subclinical endometritis and pregnancy rate in dairy cows in Mexico. Rev Mex Cien Pecu 2018;9(1):135-146. 10.22319/rmcp.v9i1.4324.

Plöntzke J, Madoz LV, de la Sota RL, Drillich M, Heuwieser W. Subclinical endometritis and its impact on reproductive performance in grazing dairy cattle in Argentina. Anim Reprod Sci 2010;122(1-1):52-57. 10.1016/j.anireprosci.2010.07.006.

Pothmann H, Prunner I, Wagener K, Jaureguiberry M, de la Sota RL, Erber R, Aurich C, Ehling-Schulz M, Drillich M. The prevalence of subclinical endometritis and intrauterine infections in repeat breeder cows. Theriogenology 2015;83(8):1249-1253. https://doi.org/10.1016/j.theriogenology.2015.01.013.

Egberts J, Detterer J, Park A, Meinecke-Tillmann S. Exfoliative endometrial cytology in embryo donor cows-comparison of sampling localizations for the diagnosis of subclinical endometritis. Vet Sci 2016;3(4):35. https://doi.org/10.3390/vetsci3040035.

Van Schyndel SJ, Bogado Pascottini O, LeBlanc SJ. Comparison of cow-side diagnostic techniques for subclinical endometritis in dairy cows. Theriogenology 2018;120:117-22. https://doi.org/10.1016/j.theriogenology.2018.08.001.

Meira EBS, Henriques LCS, Sá LRM, Gregory L. Comparison of ultrasonography and histopathology for the diagnosis of endometritis in Holstein-Friesian cows. J Dairy Sci 2012;95(12):6969-6973. https://doi.org/10.3168/jds.2011-4950.

Kasimanickam R, Duffield TF, Foster RA, Gartley CJ, Leslie KE, Walton JS, Johnson WH. Endometrial cytology and ultrasonography for the detection of subclinical endometritis in postpartum dairy cows. Theriogenology 2004;62(1–2):9–23. https://doi.org/10.1016/j.theriogenology.2003.03.001.

Barer MR. The natural history of infection. In: Greenwood D, Slack R, Barer M, Irving W editors. Medical microbiology. 18th ed. USA. Churchill Livingstone; 2012:168-173. https://doi.org/10.1016/B978-0-7020-4089-4.00029-9.

Publicado

16.05.2022

Cómo citar

Torres-Lechuga, M. E., & González-Maldonado, J. (2022). Ultrasonography and physiological description of essential events for reproductive management in dairy cattle. Review. Revista Mexicana De Ciencias Pecuarias, 13(2), 452–472. https://doi.org/10.22319/rmcp.v13i2.5789
Metrics
Vistas/Descargas
  • Resumen
    845
  • PDF
    746
  • PDF
    1672
  • Full text
    353

Número

Sección

Revisiones bibliográficas

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a