Changes in myoglobin content in pork Longissimus thoracis muscle during freezing storage

Autores/as

  • Jonathan Coria-Hernández Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Cuautitlán. Unidad de Investigación Multidisciplinaria. Carretera Cuautitlán-Teoloyucan km 2.5, 54740, Cuautitlán Izcalli, Estado de México, México.
  • Rosalía Meléndez-Pérez Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Cuautitlán. Unidad de Investigación Multidisciplinaria. Carretera Cuautitlán-Teoloyucan km 2.5, 54740, Cuautitlán Izcalli, Estado de México, México.
  • Abraham Méndez-Albores Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Cuautitlán. Unidad de Investigación Multidisciplinaria. Carretera Cuautitlán-Teoloyucan km 2.5, 54740, Cuautitlán Izcalli, Estado de México, México.
  • José Luis Arjona-Román Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Cuautitlán. Unidad de Investigación Multidisciplinaria. Carretera Cuautitlán-Teoloyucan km 2.5, 54740, Cuautitlán Izcalli, Estado de México, México.

DOI:

https://doi.org/10.22319/rmcp.v11i3.5214

Palabras clave:

myoglobin, freezing-thawing, pork meat, MDSC, Color profile, FTIR spectroscopy

Resumen

In this study, pork Longissimus thoracis muscle was used, which was frozen in a chamber and thawed under controlled conditions. The color profile and the surface myoglobin were evaluated. A thermal analysis was performed by modulated differential scanning calorimetry (MDSC), and Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR). It was found that there were important effects in myoglobin due to the freeze-thawing process in parameters such as pH, luminosity (L*), and chroma values, as well as in activation energies (Ea) and denaturation enthalpy (ΔH) between myoglobin forms. In raw meat, it was found that there was a greater proportion of deoxymyoglobin, and in frozen-thawed samples, metmyoglobin was the most abundant form, indicating that are significant effects which are correlated with the changes in tri-stimulus coordinates and with the thermal and chemical parameters in pork meat.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Chaijan M, Benjakul S, Visessanguan W, Faustman C. Characterization of myoglobin from sardine (Sardinella gibbosa) dark muscle. Food Chem 2007;100:156-164.

Kerth CR. The science of meat quality. USA: Wiley – Blackwell Ed.; 2013.

Zhou GH, Xu XL, Liu Y. Preservation technologies for fresh meat – A review. Meat Sci 2010;86:119-128.

AMSA. Meat color measurement guidelines. USA: American Meat Science Association. 2012.

Berk Z. Food process engineering and technology. 2nd ed. United Kingdom: Elsevier; 2013.

Meléndez PR, Arjona RJL, Velázquez CRR, Méndez AA, Vázquez DA. On the thermal properties of frozen, refrozen and freeze drying porcine Longissimus dorsi. J Anim Vet Adv 2011;10(22):2956-2960.

Mancini RA, Hunt MC. Current research in meat color. Meat Sci 2005;71:100-121.

Warris PD. The extraction of haem pigments from fresh meat. J Food Technol 1979;14:75-80.

AOAC. Official methods of analysis 17th. ed. Arlington, VA, USA: Association of Official Analytical Chemists. 2000.

Koniecko ES. Handbook for Meat Chemists. USA: Avery Publishing Group Inc. Wayne; 1979.

Coria HJ, Meléndez PR, Rosas MME, Llorente BA, Arjona RJL. Analysis of the color profile and shear force in ultrasonicated pork meat (Longissimus thoracis). Arctic J 2017;70(7):16-30.

Porras BLD, González HMI, Ochoa GOA, Sotelo DLI, Camelo MGA, Quintanilla CMX. Colorimetric image analysis as a factor in assessing the quality of pork ham slices during storage. Rev Mex Ing Chim 2015;14(2):243-252.

Tapp WN, Yancey JWS, Apple JK. How is the instrumental color of meat measured. Meat Sci 2011;89:1-5.

Yancey JWS, Kropf DH. Instrumental reflectance values of fresh pork are dependant on aperture size. Meat Sci 2008;79:734-739.

Tang J, Faustman C, Hoagland TA. Krzywicki revisited: Equations for spectrophotometric determination of myoglobin redox forms in aqueous meat extracts. J Food Sci 2004;69(9):717-720.

Agama AE, Bello PLA, Pacheco VG, Evangelista LS. Inner structure of plantain starch granules by surface chemical gelatinization: Morphological, physicochemical and molecular properties. Rev Mex Ing Chim 2015;14(1):73-80.

Coria HJ, Meléndez PR, Rosas MME, Llorente BA, Arjona RJL. Activation Energy for Protein Denaturation in Frozen and Freeze-Dried Pork Meat (Longissimus thoracis) by MDSC. Interciencia J 2017;47(7):22-32.

Zamudio FPB, Tirado GJM, Monter MJG, Aparicio SA, Torruco U, Salgado DR, Bello PLA. In vitro Digestibility and thermal, morphological and functional properties of flours and oat starches of different varieties. Rev Mex Ing Chim 2015;14(1):81-97.

Calzetta AR, Suarez C. Gelatinization kinetics of amaranth starch. Int J Food Sci Technol 2001;36:441-448.

Cornillon P. Characterization of osmotic dehydrated Apple by NMR and DSC. LWT Food Sci Technol 2000;33:261-267.

Coria HJ, Méndez AA, Meléndez PR, Rosas MME, Arjona RJL. Thermal, Structural, and Rheological Characterization of Waxy Starch as a Cryogel for Its Application in Food Processing. Polymers 2018;10(359):1-13.

Karamucki T, Jakubowska M, Rybarczyk A, Gardzielewska J. The influence of myoglobin on the colour of minced pork loin. Meat Sci 2013;94:234-238.

Brewer MS, Zhu LG, Bidner B, Meisinger DJ, McKeith FK. Measuring pork color: effects of bloom time, muscle, pH and relationship to instrumental parameters. Meat Sci 2001;57:169-176.

Honikel KO. pH measurement. Encyclopedia of Meat Sciences, Vol. 1. United Kingdom: Elsevier; 2014.

Krzywicki K. Assement of relative content of myoglobin, oxymyoglobin and metmyoglobin at the surface of beef. Meat Sci 1979;3:1-10.

Irie M, Swatland HJ. Relationships between Japanese pork color standards and optical properties of pork before and after frozen storage. Food Res Int 1992;25:21-30.

Lesiów T, Xiong YL. A simple, reliable and reproductive method to obtain experimental pale, soft and exudative (PSE) pork. Meat Sci 2013;93:489-494.

Lindahl G, Karlsson AH, Lundström K, Andersen HJ. Significance of storage time on degree of blooming and colour stability of pork loin from different crossbreeds. Meat Sci 2006;72:603-612.

Lindahl G, Lundström K, Tornberg E. Contribution of pigment content, myoglobin forms and internal reflectance to the colour of pork loin and ham from pure breed pigs. Meat Sci 2001;59:141-151.

Skrlep M, Candek-Potokar M. Pork color measurement as affected by bloom time and measurement location. J Muscle Foods 2006;18:78-87.

Gap-Don K, Eun-Young J, Hyun-Jung L, Han-Sul Y, Seon-Tea J, Jin-Yeon J. Influence of meat exudates on the quality characteristics of fresh and freeze-thawed pork. Meat Sci 2013;95:323-329.

Kasaai MR. Use of water properties in food technology: A global view. Int J Food Prop 2014;17:1034-1054.

Chmiel M, Słowiński M, Dasiewicz K. Lightness of the color measured by computer image analysis as a factor for assessing the quality of pork meat. Meat Sci 2011;88:566-580.

Swatland HJ. Spectrophotometry of beef muscle and adipose tissue during heating and cooling. J Muscle Foods 1997;8(1):1-12.

Cho KC, Choy CL. Thermal stability of hemoglobyn and myoglobin. Biochim Biophys Acta 1980;622:320-330.

Doster W, Bachleitner A, Dunau R, Hiebl M, Lüscher E. Thermal properties of water in myoglobin crystals and solutions at subzero temperatures. Biophys J 1986;50:213-219.

Ledward DA. Scanning calorimetric studies of some protein-protein interactions involving myoglobin. Meat Sci 1978;2:241-249.

Privalov PL, Griko YV, Venyaminov SY. Cold denaturation of myoglobin. J Mol Biol 1986;190:487-498.

Dina JB, Barón PJ, Zaritzky NE. Mathematical modeling of the heat transfer process and protein denaturation during the thermal treatment of Patagonian marine crabs. J Food Eng 2012;113:623-634.

Kazemi S, Ngadi OM, Gariépy C. Protein Denaturation in pork Longissimus muscle of a different quality groups. Food Bioprocess Technol 2011;4:102-106.

Atanasov BP, Mitova SV. Thermal denaturation of Delphinus delphis ferromyoglobin derivates in alkaline pH regions. Biochim Biophys Acta 1971;243:457-466.

Verdonck E, Schaap K, Thomas LC. A discussion of the principles and applications of Modulated Temperature DSC (MTDSC). Int J Pharm 1997;192:3-20.

Wang Y, Boysen RI, Wood BR, Kansiz M, McNaughton D, Hearn MTW. Determination of the secondary structure of proteins in different enviroments by FTIR-ATR spectroscopy and PLS regression. Byopolymers 2008;89(11):895-905.

Prieto N, Roehe R, Lavín P, Batten G, Andrés S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci 2009;83:175-186.

Uddin M, Okazaki E, Ahmad MU, Fukuda Y, Tanaka M. NIR spectroscopy: A non-destructive fast technique to verify heat treatment of fish-meat gel. Food Control 2006;17:660-664.

Publicado

21.09.2020

Cómo citar

Coria-Hernández, J., Meléndez-Pérez, R., Méndez-Albores, A., & Arjona-Román, J. L. (2020). Changes in myoglobin content in pork Longissimus thoracis muscle during freezing storage. Revista Mexicana De Ciencias Pecuarias, 11(3), 651–668. https://doi.org/10.22319/rmcp.v11i3.5214
Metrics
Vistas/Descargas
  • Resumen
    940
  • PDF
    390
  • PDF
    306
  • Full text
    124

Número

Sección

Artículos

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.