Composición química y adaptación del pasto tropical Leersia hexandra Sw. expuesto a suelo con petróleo crudo
DOI:
https://doi.org/10.22319/rmcp.v16i1.6744Palabras clave:
Rizobacterias, Proteína cruda, Lignina, Fibra detergente neutraResumen
El presente estudio se realizó para evaluar la composición química y el potencial de adaptación de L. hexandra bajo condiciones de estrés al petróleo crudo, a través de la población de rizobacterias, acumulación de proteína cruda, fibra detergente neutra, fibra detergente ácida y lignina en follaje de plantas jóvenes que emergen del macollo de la planta principal a diferente edad de crecimiento (día 180 y 360), así como la producción de plantas jóvenes en el macollo, materia seca aérea y radical. Los resultados mostraron que las concentraciones de petróleo crudo en el suelo afectaron significativamente la población de Azotobacter spp. (0.361*), sin embargo, se inhibió Azospirillum spp. y Pseudomonas spp., mientras tanto, con la extensión del tiempo se incrementó ambas poblaciones (0.778*, 0.767*). Así mismo, se vio incrementada la síntesis de proteína cruda (0.551**) y lignina en follaje (0.354*) y la producción de plantas jóvenes en el macollo (0.465**) y materia seca radical (0.362*), lo que indica una estrategia de L. hexandra para sobrevivir y adaptarse a la contaminación del suelo por petróleo crudo. Sin embargo, la composición química se vio afectada por la edad del pasto, en la que incrementó el porcentaje de fibra detergente neutra (0.832**), fibra detergente ácida (0.741**) y lignina (0.661**), mientras que la proteína cruda se redujo (-0.497**).
Descargas
Citas
Alarcón A, García-Díaz M, Hernández-Cuevas LV, Esquivel-Cote R, Ferrera-Cerrato R, Almaraz-Suarez JJ, et al. Impact of crude oil on functional groups of culturable bacteria and colonization of symbiotic microorganisms in the Clitoria-Brachiaria rhizosphere grown in mesocosms. Acta Biol Colomb 2019;24(2):343-353. DOI: https://doi.org/10.15446/abc.v24n2.64771
Zawierucha I, Malina G, Herman B, Rychter P, Biczak R, Pawlowska B, et al. Ecotoxicity and bioremediation potential assessment of soil from oil refinery station area. J Environ Health Sci Eng 2022;20:337-346. DOI: https://doi.org/10.1007/s40201-021-00780-0
Sattar S, Hussain R, Shah SM, Bibi S, Ahmad SR, Shahzad A, et al. Composition, impacts, and removal of liquid petroleum waste through bioremediation as an alternative clean-up technology: A review. Heliyon 2022;8:e11101. DOI: https://doi.org/10.1016/j.heliyon.2022.e11101
Devatha CO, Vishnu VA, Chandra RJP. Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Appl Water Sci 2019;9:89. DOI: https://doi.org/10.1007/s13201-019-0970-4
Correa HS, Blum CT, Galvão F, Maranho LT. Effects of oil contamination on plant growth and development: a review. Environ Sci Pollut Res Int 2022;29:43501-43515. DOI: https://doi.org/10.1007/s11356-022-19939-9
Adams RH, Zavala-Cruz J, Morales-García F. Concentración residual de hidrocarburos en suelo del trópico. II: Afectación a la fertilidad y su recuperación. Interciencia 2008;33(7):483-489.
Rivera-Cruz MC, Trujillo-Narcía A, Trujillo-Rivera EA, Arias-Trinidad A, Remedios Mendoza-López MR. Natural attenuation of weathered oil using aquatic plants in a farm in Southeast Mexico. Int J Phytoremediation 2016;18(9):877-884. DOI: https://doi.org/10.1080/15226514.2016.1156632
Vegetti AC. Caracterización de los sistemas de ramificación en especies de Oryzeae (Poaceae). Candollea 2002;57(2):251-260.
Aparicio R, González-Ronquillo M, Torres R, Astudillo L, Córdova L, Carrasquel J. Degradabilidad de los pastos lambedora (Leersia hexandra) y paja de agua (Hymenachne amplexicaulis) en cuatro épocas del año de una sabana inundable del estado Apure, Venezuela. Zootec Tropic 2007;25(3):225-228.
Neumann G, Römheld V. Rhizosphere chemistry in relation to plant nutrition. In: Marschner P editor. Marschner’s mineral nutrition of higher plants. 3rd ed. San Diego: Academic Press; 2012:347-368. DOI: https://doi.org/10.1016/B978-0-12-384905-2.00014-5
Panchenko L, Muratova A, Dubrovskaya E, Golubev S, Turkovskaya O. Dynamics of natural revegetation of hydrocarbon-contaminated soil and remediation potential of indigenous plant species in the steppe zone of the southern Volga Uplands. Environ Sci Pollut Res 2018;25:3260-3274. DOI: https://doi.org/10.1007/s11356-017-0710-y
Correa-García S, Pande P, Séguin A, St-Arnaud M, Yergeau E. Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microb Biotechnol 2018;11:819-832. DOI: https://doi.org/10.1111/1751-7915.13303
Orocio-Carrillo JA, Rivera-Cruz MC, Aranda-Ibañez EM, Trujillo-Narcía A, Hernández-Galvez G, Mendoza-López MR. Hormesis under oil-induced stress in Leersia hexandra Sw. used as phytoremediator in clay soils of the Mexican humid tropic. Ecotoxicology 2019;28:1063-1074. DOI: https://doi.org/10.1007/s10646-019-02106-1
Minuț M, Diaconu M, Roșca M, Cozma P, Bulgariu L, Gavrilescu M. Screening of Azotobacter, Bacillus and Pseudomonas species as plant growth-promoting bacteria. Processes 2022;11:80. DOI: https://doi.org/10.3390/pr11010080
Graj W, Lisiecki P, Szulc A, Chrzanowski Ł, Wojtera-Kwiczor J. Bioaugmentation with petroleum-degrading consortia has a selective growth-promoting impact on crop plants germinated in diesel oil-contaminated soil. Water Air Soil Pollut 2013;224:1676. DOI: https://doi.org/10.1007/s11270-013-1676-0
Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ. Rhizoremediation: A beneficial blant-microbe interaction. Mol Plant Microbe Interact 2004;17(1):6-15. DOI: https://doi.org/10.1094/MPMI.2004.17.1.6
Arias-Trinidad A, Rivera-Cruz MC, Roldán-Garrigós A, Aceves-Navarro LA, Quintero-Lizaola R, Hernández-Guzmán J. Uso de Leersia hexandra (Poaceae) en la fitorremediación de suelos contaminados con petróleo fresco e intemperizado. Rev Biol Trop 2017;65(1):21-30. DOI: https://doi.org/10.15517/rbt.v65i1.22967
Chávez-Álvarez K, Rivera-Cruz MC, Aceves-Navarro LA, Trujillo-Narcía A, García-de la Cruz R, Vega-López A. Physiological and microbiological hormesis in sedge Eleocharis palustris induced by crude oil in phytoremediation of flooded clay soil. Ecotoxicology 2022;31(8):1241-1253. DOI: https://doi.org/10.1007/s10646-022-02583-x
Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. In: Chemosphere. Elsevier Ltd. 2013;1317-1332. DOI: https://doi.org/10.1016/j.chemosphere.2012.09.045
Silva PVC, Plucani AF, Ané JM, Stacey G. Diazotrophic bacteria and their mechanisms to interact and benefit cereals. Curr Rev 2021;34(5):491-498. DOI: https://doi.org/10.1094/MPMI-11-20-0316-FI
Kochhar SL, Kaur GS. Plant physiology: Theory and applications. 2nd ed. Cambridge University Press; 2020. DOI: https://doi.org/10.1017/9781108486392
Hoang SA, Lamb D, Seshadri B, Sarkar B, Cheng Y, Wang L, et al. Petroleum hydrocarbon rhizoremediation and soil microbial activity improvement via cluster root formation by wild proteaceae plant species. Chemosphere 2021;275:130135. DOI: https://doi.org/10.1016/j.chemosphere.2021.130135
Skrypnik L, Maslennikov P, Novikova A, Kozhikin M. Effect of crude oil on growth, oxidative stress and response of antioxidative system of two rye (Secale cereale L.) varieties. Plants 2021;10(1):157. DOI: https://doi.org/10.3390/plants10010157
Shinozaki K, Uemura M, Bailey-Serres J, Bray AE, Weretilnyk E. Responses to abiotic stress. In: Buchanan B, et al, editors. Biochemistry and molecular biology of plants. 2nd ed. Wiley and Blackwell, Chichester; 2015:1051-1100.
Correa HS, Maranho LT. The potential association of Echinochloa polystachya (Kunth) Hitchc. with bacterial consortium for petroleum degradation in contaminated soil. Appl Sci 2021;3:80. DOI: https://doi.org/10.1007/s42452-020-04070-6
Habermann E, Dias OEA, Contin DR, Delvecchio G, Viciedo DO, de Moraes MA, et al. Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass. Physiol Plant 2019;165(2):383-402. DOI: https://doi.org/10.1111/ppl.12891
Lee MA, Davis AP, Chagunda MGG, Manning P. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences 2017;14:1403-1417. DOI: https://doi.org/10.5194/bg-14-1403-2017
Dumont B, Andueza D, Niderkorn V, Lüscher A, Porqueddu C, Picon-Cochard C. A meta-analysis of climate change effects on forage quality in grasslands: specificities of mountain and Mediterranean areas. Grass Forage Sci 2015;70:239-254. DOI: https://doi.org/10.1111/gfs.12169
Döbereiner J, Marriel IE, Nery M. Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 1966;22:1464-1473. DOI: https://doi.org/10.1139/m76-217
Garrity GM, Bell JA, Lilburn T. Order IX. Pseudomonadales Orla-Jensen 1921, 270AL. In: Brenner DJ, et al. editors. 2nd ed. Bergey’s Manual® of Systematic Bacteriology. Boston, Springer; 2005:323-442. DOI: https://doi.org/10.1007/0-387-28022-7_9
AOAC. Official methods of analysis. 15th ed. Arlington, VA, USA: Association of Official Analytical Chemists. 1990.
Van Soest JP. Nitrogen metabolism. Nutritional ecology of the ruminant. 2nd ed. Cornell University Press: Ithaca, NY: Comstock Publishing Associates; 1994. DOI: https://doi.org/10.7591/9781501732355
Orocio-Carrillo JA, Rivera-Cruz MC, Juárez-Maldonado A, Bautista-Muñoz CC, Trujillo-Narcía A, González-García Y, et al. Crude oil induces plant growth and antioxidant production in Leersia hexandra Sw. Plant Soil Environ 2024;70(2):72-83. DOI: https://doi.org/10.17221/311/2023-PSE
SAS. Institute. SAS. Statistic User’s guides Statics. SAS Inst. Inc 2016.
Rodríguez-Rodríguez N, Rivera-Cruz MC, Trujillo-Narcía A, Almaráz-Suárez JJ, Salgado-García S. Spatial distribution of oil and biostimulation through the rhizosphere of Leersia hexandra in degraded soil. Water Air Soil Pollut 2016;227(9):319. DOI: https://doi.org/10.1007/s11270-016-3030-9
Uribe M, Peñuela GA, Pino NJ. Megathyrsus maximus and Brachiaria decumbens improve soil characteristics and select promising rhizobacteria during rhizoremediation of petroleum hydrocarbons. Rhizosphere 2022;22:100517. DOI: https://doi.org/10.1016/j.rhisph.2022.100517
Rivera-Cruz MC. Flora y microflora rizosférica del pantano: indicadoras de perturbación causada por petróleo e inundación. Agroregión 2011;5:12-15.
Badalucco L, Kuikman PJ. Mineralization and Immobilization in the Rhizosphere. In: Pinton R, et al, editors. The rhizosphere. Biochemistry and organic substances at the soil-plant interface. United States of America: Marcel Dekker AG; 2001:159-196.
Xie X, Weiss DJ, Weng B, Liu J, Lu H, Yan C. The short-term effect of cadmium on low molecular weight organic acid and amino acid exudation from mangrove (Kandelia obovata (S., L.) Yong) roots. Environ Sci Pollut Res 2013;20:997-1008. DOI: https://doi.org/10.1007/s11356-012-1031-9
Zhao M, Zhao J, Yuan J, Hale L, Wen T, Huang Q, et al. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant Cell Environ 2021;44(2):613-628. DOI: https://doi.org/10.1111/pce.13928
Huang L, Ye J, Jiang K, Wang Y, Li Y. Oil contamination drives the transformation of soil microbial communities: Co-occurrence pattern, metabolic enzymes and culturable hydrocarbon-degrading bacteria. Ecotoxicol Environ Saf 2021;225:112740. DOI: https://doi.org/10.1016/j.ecoenv.2021.112740
Bidja AMT, Chen G, Chen Z, Zheng X, Li S, Li T, et al. Microbial diversity changes and enrichment of potential petroleum hydrocarbon degraders in crude oil-, diesel-, and gasoline-contaminated soil. Biotech 2020;10(2):42. DOI: https://doi.org/10.1007/s13205-019-2027-7
Al-Hawas GHS, Shukry WM, Azzoz MM, Al-Moaik RMS. The effect of sublethal concentrations of crude oil on the metabolism of Jojoba (Simmodsia chinensis) seedlings. Int Res J Plant Sci 2012;3(4):54-62.
Achuba FI, Ja-anni MO. Effect of abattoir waste water on metabolic and antioxidant profiles of cowpea seedlings grown in crude oil contaminated soil. Int J Recycl Waste Agric 2018;7:59-66. DOI: https://doi.org/10.1007/s40093-017-0190-6
Roa GA, Quintana-Obregón EA, González-Renteria M, Diaz DAR. Increasing wheat protein and yield through sulfur fertilization and its relationship with nitrogen. Nitrogen 2024;5(3):553-571. DOI: https://doi.org/10.3390/nitrogen5030037
Tissot BP, Welte DH. Petroleum formation and occurrence: composition of crude oils. 2nd ed. Berlin Heidelberg, New York: Springer-Verlag; 1984. DOI: https://doi.org/10.1007/978-3-642-87813-8
Juárez J, Bolaños ED, Vargas LM, Medina S, Martínez-Hernández PA. Curvas de dilución de la proteína en genotipos del pasto Brachiaria humidicola (Rendle) Schweick. Rev Cub Cien Agric 2011;45(3):321-331.
Rosales RB, Pinzón SS. Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Rev Corp 2005;6(1):69-82. DOI: https://doi.org/10.21930/rcta.vol6_num1_art:39
Palacios-Díaz MP, Mendoza-Grimón V, Fernández-Vera JR, Hernández-Moreno JM. Effects of defoliation and nitrogen uptake on forage nutritive values of Pennisetum sp. J Anim Plant Sci 2013;23(2):566-574.
Álvarez-Vázquez P, Mendoza-Pedroza SI, Cadena-Villegas S, Calzada-Marín JM, Ortega-Jiménez E, Vaquera-Huerta H, et al. Cambios en el rendimiento y composición química del pasto Maralfalfa (Cenchrus sp) a diferente edad. Rev Fitotec Mex 2021;44(4):729-736. DOI: https://doi.org/10.35196/rfm.2021.4-A.729
Grev AM, Wells MS, Catalano DN, Martinson KL, Jungers JM, Sheaffer CC. Stem and leaf forage nutritive value and morphology of reduced lignin alfalfa. Agron J 2020;112:406-417. DOI: https://doi.org/10.1002/agj2.20011
Schnellmann LP, Verdoljak JJO, Bernardis A, Martínez-González JC, Castillo-Rodríguez SP, Limas-Martínez AG. Cutting frequency and height on the quality of Megathyrsus maximus (cv. Gatton panic). Cien Tecnol Agropecu 2020;21(3):e1402. DOI: https://doi.org/10.21930/rcta.vol21_num3_art:1402
Horrocks RD, Vallentine JF. Field-Harvesting hay. Harvest Forag 1999;245-277. DOI: https://doi.org/10.1016/B978-012356255-5/50035-3
Han X, Zhao Y, Chen Y, Xu J, Jiang C, Wang X, et al. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. J Forestry Res 2022;2:9. DOI: https://doi.org/10.48130/FR-2022-0009
Wei Y, Wang Y, Duan M, Han J, Li G. Growth tolerance and remediation potential of six plants in oil-polluted soil. J Soil Sediment 2019;19(11):3773-3785. DOI: https://doi.org/10.1007/s11368-019-02348-w
González-Moscoso M, Rivera-Cruz MC, Delgadillo-Martínez J, Lagunes-Espinosa LC. Growth analysis and plant production of Leersia hexandra Swartz in tropic wet Mexican in function on petroleum and surfactant. Polibotánica 2017;43:177-196.
Marín-García DC, Adams RH, Hernández-Barajas R. Effect of crude petroleum on water repellency in a clayey alluvial soil. Int J Environ Sci Technol 2016;13:55-64. DOI: https://doi.org/10.1007/s13762-015-0838-6
Stepanova AY, Gladkov EA, Osipova ES, Gladkova OV, Tereshonok DV. Bioremediation of soil from petroleum contamination. Processes 2022;10(6):1224. DOI: https://doi.org/10.3390/pr10061224
Descargas
Publicado
Cómo citar
-
Resumen386
-
PDF111
-
PDF 46
-
Texto completo2
-
Full text 4
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores/as que publiquen en la Revista Mexicana de Ciencias Pecuarias aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Pecuarias reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.