El uso de los bacteriófagos en la seguridad alimentaria y el control de patógenos. Revisión

Autores/as

  • Juan Martín Talavera-González Tecnológico Nacional de México/Tecnológico de Estudios Superiores de San Felipe del Progreso. Estado de México, México https://orcid.org/0000-0002-6579-2251
  • Martin Talavera-Rojas Universidad Autónoma del Estado de México. Facultad de Medicina Veterinaria y Zootecnia. Estado de México, MéxicoUniversidad Autónoma del Estado de México https://orcid.org/0000-0003-0908-985X
  • Vicente Vega-Sánchez Universidad Autónoma del Estado de Hidalgo. Instituto de Ciencias Agropecuarias. Hidalgo, MéxicoUniversidad Autónoma del Estado de Hidalgo https://orcid.org/0000-0003-3466-8677
  • Jorge Antonio Varela-Guerrero Universidad Autónoma del Estado de México. Facultad de Medicina Veterinaria y Zootecnia. Estado de México, México https://orcid.org/0000-0001-6887-5979

DOI:

https://doi.org/10.22319/rmcp.v16i2.6737

Palabras clave:

Bacteriófagos, Descontaminación, Patógenos, Seguridad alimentaria

Resumen

El aumento de la población humana será directamente proporcional a la demanda de alimentos que deberán cumplir con exigencias globales, lo que implica la urgencia de asegurar la calidad alimentaria, manteniendo sus atributos y valores nutricionales sin contribuir al aumento de resistencia bacteriana. En años recientes, los bacteriófagos han ganado relevancia por su alta especificidad y su consideración como respetuosos con el medio ambiente para el control biológico de patógenos en los alimentos. Múltiple evidencia científica ha revelado una gran efectividad de los bacteriófagos disminuyendo significativamente el recuento bacteriano de patógenos asociados a la industria alimentaria. Además, en años recientes, diversas compañías internacionales han comenzado a producir y comercializar productos basados en fagos para ser aplicados en productos alimenticios. Esta revisión resalta las recientes investigaciones sobre el uso de los bacteriófagos en carne cruda o cocida de diferentes animales, alimentos listos para comer, en superficies empleadas para la manipulación de alimentos y en materiales de embalaje para combatir los patógenos transmitidos por los alimentos que se reportan con mayor frecuencia en brotes, incluyendo Salmonella, Escherichia coli, Campylobacter y Listeria monocytogenes. Además, se mencionan los productos fágicos que son comercializados por varias compañías para su uso en la descontaminación de alimentos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Polaska M, Sokolowxka B. Bacteriophages—a new hope or a huge problem in the food industry. Microbiology 2019;5(4):324–346. DOI: https://doi.org/10.3934/microbiol.2019.4.324

Lavilla M, Domingo-Calap P, Sevilla-Navarro S, Lasagabaster A. Natural killers: Opportunities and challenges for the use of bacteriophages in microbial food safety from the one health perspective. Foods 2023;12(3):552. DOI: https://doi.org/10.3390/foods12030552

Endersen L, Coffey A. The use of bacteriophages for food safety. Curr Opin Food Sci 2020;36:1–8. DOI: https://doi.org/10.1016/j.cofs.2020.10.006

Dülger MM, Özpinar H. Use of bacteriophages to improve food safety. IGUSABDER. 2021;15:705–712. DOI: https://doi.org/10.38079/igusabder.1004988

Vikram A, Woolston J, Sulakvelidze A. Phage biocontrol applications in food production and processing. Curr Issues Mol Biol 2020;40:267–302. DOI: https://doi.org/10.21775/cimb.040.267

Rehman S, Ali Z, Khan M, Bostan N, Naseem S. The dawn of phage therapy. Rev Med Virol 2019;29(4):e2041. DOI: https://doi.org/10.1002/rmv.2041

Hagens S, Loessner MJ. Application of bacteriophages for detection and control of foodborne pathogens. Appl Microbiol Biotechnol 2007;76(3):513–519. DOI: https://doi.org/10.1007/s00253-007-1031-8

Coffey B, Mills S, Coffey A, McAuliffe O, Ross RP. Phage and their lysins as biocontrol agents for food safety applications. Annu Rev Food Sci Technol 2010;1:449–468. DOI: https://doi.org/10.1146/annurev.food.102308.124046

Moye ZD, Woolston J, Sulakvelidze A. Bacteriophage applications for food production and processing. Viruses 2018;10(4):205. DOI: https://doi.org/10.3390/v10040205

Hertwig S, Hammerl JA, Alter T. Post-harvest application of lytic bacteriophages for biocontrol of food-borne pathogens and spoilage bacteria. Berl Munch Tierarztl Wochenschr 2013;126(9-10):357-369.

Keen EC. A century of phage research: Bacteriophages and the shaping of modern biology. BioEssays 2015;37(1):6–9. DOI: https://doi.org/10.1002/bies.201400152

Talavera-González JM, Talavera-Rojas M. Bacteriófagos, los virus come-bacterias: historia de dos mentes científicas. Rev Digit Univ 2021;22(5). DOI: https://doi.org/10.22201/cuaieed.16076079e.2021.22.5.9

Hyla K, Dusza I, Skaradzińska A. Recent advances in the application of bacteriophages against common foodborne pathogens. Antibiotics 2022;11(11):1536. DOI: https://doi.org/10.3390/antibiotics11111536

Martínez-Alvarez O, Iriondo-Dehond A, Gómez-Estaca J, Dolores del Castillo M. Nuevas tendencias en la producción y consumo alimentario. Distribución y Consumo. 2021;1(165):51-62.

Lopez SGL. Factores que influyen en la compra de alimentos orgánicos en México. Un análisis mixto. Small Business Int Review 2019;3(2):69-85. DOI: https://doi.org/10.26784/sbir.v3i2.210

Hagens S, Vegt B de, Peterson R. Efficacy of a commercial phage cocktail in reducing Salmonella contamination on poultry products. Meat Muscle Biol 2018;2(2). DOI: https://doi.org/10.22175/rmc2018.136

Yeh Y, de Moura FH, Van Den Broek K, de Mello AS. Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Sci 2018;139:44–48. DOI: https://doi.org/10.1016/j.meatsci.2018.01.007

Guenther S, Herzig O, Fieseler L, Klumpp J, Loessner MJ. Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int J Food Microbiol 2012;154(1–2):66–72. DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.12.023

Galarce NE, Bravo JL, Robeson JP, Borie CF. Bacteriophage cocktail reduces Salmonella enterica serovar Enteritidis counts in raw and smoked salmon tissues. Rev Argent Microbiol 2014;46(4):333–337. DOI: https://doi.org/10.1016/S0325-7541(14)70092-6

Hong Y, Schmidt K, Marks D, et al. Treatment of Salmonella-contaminated eggs and pork with a broad-spectrum, single bacteriophage. Foodborne Pathog Dis 2016;13(12):679–688. DOI: https://doi.org/10.1089/fpd.2016.2172

Islam MS, Zhou Y, Liang L, et al. Application of a phage cocktail for control of Salmonella in foods and reducing biofilms. Viruses 2019;11(9):841. DOI: https://doi.org/10.3390/v11090841

Gouvêa DM, Mendonça RCS, Lopez MES, Batalha LS. Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. LWT - Food Sci Technol 2016;67:159–166. DOI: https://doi.org/10.1016/j.lwt.2015.11.043

Rindhe S, Khan A, Priyadarshi R, et al. Application of bacteriophages in biopolymer-based functional food packaging films. Compr Rev Food Sci Food Saf 2024;23(3):e13333. DOI: https://doi.org/10.1111/1541-4337.13333

Yan T, Liang L, Yin P, et al. Application of a novel phage LPSEYT for biological control of Salmonella in foods. Microorganisms 2020;8(3):400. DOI: https://doi.org/10.3390/microorganisms8030400

Thung TY, Premarathne JKJK, Chang WS, et al. Use of a lytic bacteriophage to control Salmonella Enteritidis in retail food. LWT 2017;78:222–225. DOI: https://doi.org/10.1016/j.lwt.2016.12.044

Whichard JM, Sriranganathan N, Pierson FW. Suppression of Salmonella growth by bacteriophage Felix 01. J Food Prot 2003;66(2):220–225. DOI: https://doi.org/10.4315/0362-028X-66.2.220

Bigwood T, Hudson JA, Billington C, et al. Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol 2008;25(2):400–406. DOI: https://doi.org/10.1016/j.fm.2007.11.003

Modi R, Hirvi Y, Hill A, et al. Effect of phage on survival of Salmonella Enteritidis in cheddar cheese. J Food Prot 2001;64(7):927–933. DOI: https://doi.org/10.4315/0362-028X-64.7.927

Goode D, Allen VM, Barrow PA. Reduction of experimental Salmonella and Campylobacter contamination of chicken in chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 2003;69(8):5032–5036. DOI: https://doi.org/10.1128/AEM.69.8.5032-5036.2003

Bao H, Zhang P, Zhang H, et al. Bio-control of Salmonella Enteritidis in foods using bacteriophages. Viruses 2015;7(8):4836–4853. DOI: https://doi.org/10.3390/v7082847

Kang HW, Kim JW, Jung TS, et al. wksl3, a new biocontrol agent for Salmonella in foods. Appl Environ Microbiol 2013;79(6):1956–1968. DOI: https://doi.org/10.1128/AEM.02793-12

Hungaro HM, Mendonça RCS, Gouvêa DM, et al. Use of bacteriophages to reduce Salmonella in chicken skin. Food Res Int 2013;52(1):75–81. DOI: https://doi.org/10.1016/j.foodres.2013.02.032

Jorquera D, Navarro C, Rojas V, Turra G, Robeson J, Borie C. The use of a bacteriophage cocktail as a biocontrol measure to reduce Salmonella enterica serovar Enteritidis contamination in ground meat and goat cheese. Biocontrol Sci Technol 2015;25(8):970–974. DOI: https://doi.org/10.1080/09583157.2015.1018815

Sukumaran AT, Nannapaneni R, Kiess A, Sharma CS. Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials. Int J Food Microbiol 2015;207:8–15. DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.04.025

Sukumaran AT, Nannapaneni R, Kiess A, Sharma CS. Reduction of Salmonella on chicken breast fillets stored under aerobic or modified atmosphere packaging by the application of lytic bacteriophage preparation SalmoFresh™. Poult Sci 2016;95(3):668–675. DOI: https://doi.org/10.3382/ps/pev332

Rodríguez-Auad JP. Panorama de la infección por Listeria monocytogenes. Overview of Listeria monocytogenes infection. Rev Chil Infectol 2018;35(6):649-657. DOI: https://doi.org/10.4067/S0716-10182018000600649

Figueiredo ACL, Almeida RCC. Antibacterial efficacy of nisin, bacteriophage P100 and sodium lactate against Listeria monocytogenes in ready-to-eat sliced pork ham. Braz J Microbiol 2017;48(4):724–729. DOI: https://doi.org/10.1016/j.bjm.2017.02.010

Nóbrega E, Silva G, Cláudia A, Figueiredo L, Miranda FA, Comastri R, et al. Control of Listeria monocytogenes growth in soft cheeses by bacteriophage P100. Braz J Microbiol 2014;45(1):11–16. DOI: https://doi.org/10.1590/S1517-83822014000100003

Baños A, García-López JD, Núñez C, Martínez-Bueno M, Maqueda M, Valdivia E. Biocontrol of Listeria monocytogenes in fish by enterocin AS-48 and Listeria lytic bacteriophage P100. LWT - Food Sci Technol 2016;66:672–677. DOI: https://doi.org/10.1016/j.lwt.2015.11.025

Gray JA, Chandry PS, Kaur M, Kocharunchitt C, Bowman JP, Fox EM. Novel biocontrol methods for Listeria monocytogenes biofilms in food production facilities. Front Microbiol 2018;9:605. DOI: https://doi.org/10.3389/fmicb.2018.00605

Gutiérrez D, Rodríguez-Rubio L, Fernández L, Martínez B, Rodríguez A, García P. Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control 2017;73:1474–1482. DOI: https://doi.org/10.1016/j.foodcont.2016.11.007

Soni KA, Nannapaneni R, Hagens S. Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathog Dis 2010;7(4):427–434. DOI: https://doi.org/10.1089/fpd.2009.0432

Soni KA, Nannapaneni R. Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue. J Food Prot 2010;73(1):32–38. DOI: https://doi.org/10.4315/0362-028X-73.1.32

Allende A, Bolton D, Chemaly M, Davis R, Fernández Escámez PS, Gironés R, et al. Evaluation of the safety and efficacy of ListexTM P100 for reduction of pathogens on different ready-to-eat (RTE) food products. EFSA J 2016;14(8). DOI: https://doi.org/10.2903/j.efsa.2016.4565

Guenther S, Huwyler D, Richard S, Loessner MJ. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol 2009;75(1):93–100. DOI: https://doi.org/10.1128/AEM.01711-08

Ishaq A, Ebner PD, Syed QA, Rahman HU. Employing list-shield bacteriophage as a bio-control intervention for Listeria monocytogenes from raw beef surface and maintain meat quality during refrigeration storage. LWT - Food Sci Technol 2020;132:109784. DOI: https://doi.org/10.1016/j.lwt.2020.109784

Anany H, Chen W, Pelton R, Griffiths MW. Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl Environ Microbiol 2011;77(18):6379–6387. DOI: https://doi.org/10.1128/AEM.05493-11

Iacumin L, Manzano M, Comi G. Phage inactivation of Listeria monocytogenes on San Daniele dry-cured ham and elimination of biofilms from equipment and working environments. Microorganisms 2016;4(1):4. DOI: https://doi.org/10.3390/microorganisms4010004

Chibeu A, Agius L, Gao A, Sabour PM, Kropinski AM, Balamurugan S. Efficacy of bacteriophage LISTEXTMP100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int J Food Microbiol 2013;167(2):208–214. DOI: https://doi.org/10.1016/j.ijfoodmicro.2013.08.018

Soni KA, Desai M, Oladunjoye A, Skrobot F, Nannapaneni R. Reduction of Listeria monocytogenes in queso fresco cheese by a combination of listericidal and listeriostatic GRAS antimicrobials. Int J Food Microbiol 2012;155(1–2):82–88. DOI: https://doi.org/10.1016/j.ijfoodmicro.2012.01.010

Carlton RM, Noordman WH, Biswas B, De Meester ED, Loessner MJ. Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 2005;43(3):301–312. DOI: https://doi.org/10.1016/j.yrtph.2005.08.005

Perera MN, Abuladze T, Li M, Woolston J, Sulakvelidze A. Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol 2015;52:42–48. DOI: https://doi.org/10.1016/j.fm.2015.06.006

Bigot B, Lee WJ, McIntyre L, Wilson T, Hudson JA, Billington C, et al. Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol 2011;28(8):1448–1452. DOI: https://doi.org/10.1016/j.fm.2011.07.001

Guenther S, Loessner MJ. Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. Bacteriophage 2011;1(2):94–100. DOI: https://doi.org/10.4161/bact.1.2.15662

Lee S, Kim MG, Lee HS, Heo S, Kwon M, Kim GB. Isolation and characterization of listeria phages for control of growth of Listeria monocytogenes in milk. Korean J Food Sci Anim Resour 2017;37(2):320–328. DOI: https://doi.org/10.5851/kosfa.2017.37.2.320

Ramos S, Silva V, Dapkevicius MLE, Caniça M, Tejedor-Junco MT, Igrejas G, et al. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals 2020;10(12):1–15. DOI: https://doi.org/10.3390/ani10122239

Yang SC, Lin CH, Aljuffali IA, Fang JY. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch Microbiol 2017;199(6):811–825. DOI: https://doi.org/10.1007/s00203-017-1393-y

Carter CD, Parks A, Abuladze T, Li M, Woolston J, Magnone J, et al. Bacteriophage cocktail significantly reduces Escherichia coli O157. Bacteriophage 2012;2(3):178–185. DOI: https://doi.org/10.4161/bact.22825

Vikram A, Tokman JI, Woolston J, Sulakvelidze A. Phage biocontrol improves food safety by significantly reducing the level and prevalence of Escherichia coli O157:H7 in various foods. J Food Prot 2020;83(4):668–676. DOI: https://doi.org/10.4315/0362-028X.JFP-19-433

Dewanggana MN, Evangeline C, Ketty MD, Waturangi DE, Yogiara MS. Isolation, characterization, molecular analysis and application of bacteriophage DW-EC to control Enterotoxigenic Escherichia coli on various foods. Sci Rep 2022;12(1):495. DOI: https://doi.org/10.1038/s41598-021-04534-8

Choi I, Yoo DS, Chang Y, Kim SY, Han J. Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chem 2021;346:128883. DOI: https://doi.org/10.1016/j.foodchem.2020.128883

Viazis S, Akhtar M, Feirtag J, Diez-Gonzalez F. Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. Int J Food Microbiol 2011;145(1):37–42. DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.11.021

Wang C, Hang H, Zhou S, Niu YD, Du H, Stanford K, et al. Bacteriophage biocontrol of Shiga toxigenic Escherichia coli (STEC) O145 biofilms on stainless steel reduces the contamination of beef. Food Microbiol 2020;92:103572. DOI: https://doi.org/10.1016/j.fm.2020.103572

O’Flynn G, Ross RP, Fitzgerald GF, Coffey A. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl Environ Microbiol 2004;70(6):3417–3424. DOI: https://doi.org/10.1128/AEM.70.6.3417-3424.2004

Hudson JA, Billington C, Wilson T, On SLW. Effect of phage and host concentration on the inactivation of Escherichia coli O157:H7 on cooked and raw beef. Food Sci Technol Int 2015;21(2):104–109. DOI: https://doi.org/10.1177/1082013213513031

McLean SK, Dunn LA, Palombo EA. Phage inhibition of Escherichia coli in ultrahigh-temperature-treated and raw milk. Foodborne Pathog Dis 2013;10(11):956–962. DOI: https://doi.org/10.1089/fpd.2012.1473

Waturangi DE, Kasriady CP, Guntama G, Sahulata AM, Lestari D, Magdalena S. Application of bacteriophage as food preservative to control enteropathogenic Escherichia coli (EPEC). BMC Res Notes 2021;14(1):336. DOI: https://doi.org/10.1186/s13104-021-05756-9

Shebs-Maurine EL, Torres ES, Yeh-Parker Y, de Mello AS. Application of MS bacteriophages on contaminated trimmings reduces Escherichia coli O157 and non-O157 in ground beef. Meat Sci 2020;170:108243. DOI: https://doi.org/10.1016/j.meatsci.2020.108243

Tomat D, Casabonne C, Aquili V, Balagué C, Quiberoni A. Evaluation of a novel cocktail of six lytic bacteriophages against Shiga toxin-producing Escherichia coli in broth, milk and meat. Food Microbiol 2018;76:434–442. DOI: https://doi.org/10.1016/j.fm.2018.07.006

Liu H, Niu YD, Meng R, Wang J, Li J, Johnson RP, et al. Control of Escherichia coli O157 on beef at 37, 22 and 4°C by T5-, T1-, T4-and O1-like bacteriophages. Food Microbiol 2015;51:69–73. DOI: https://doi.org/10.1016/j.fm.2015.05.001

Brás A, Braz M, Martinho I, Duarte J, Pereira C, Almeida A. Effect of bacteriophages against biofilms of Escherichia coli on food processing surfaces. Microorganisms 2024;12(2):366. DOI: https://doi.org/10.3390/microorganisms12020366

Jaroni D, Litt PK, Bule P, Rumbaugh K. Effectiveness of bacteriophages against biofilm-forming shiga-toxigenic Escherichia coli in vitro and on food-contact surfaces. Foods 2023;12(14):2787. DOI: https://doi.org/10.3390/foods12142787

Olson EG, Micciche AC, Rothrock MJ, Yang Y, Ricke SC. Application of bacteriophages to limit Campylobacter in poultry production. Front Microbiol 2022;12:458721. DOI: https://doi.org/10.3389/fmicb.2021.458721

Jamal M, Bukhari SMAUS, Andleeb S, Ali M, Raza S, Nawaz MA, et al. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol 2019;59(2):123–133. DOI: https://doi.org/10.1002/jobm.201800412

Ushanov L, Lasareishvili B, Janashia I, Zautner AE. Application of Campylobacter jejuni phages: Challenges and perspectives. Animals 2020;10(2):279. DOI: https://doi.org/10.3390/ani10020279

Atterbury RJ, Connerton PL, Dodd CER, Rees CED, Connerton IF. Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl Environ Microbiol 2003;69(10):6302–6306. DOI: https://doi.org/10.1128/AEM.69.10.6302-6306.2003

Zampara A, Sørensen MCH, Elsser-Gravesen A, Brøndsted L. Significance of phage-host interactions for biocontrol of Campylobacter jejuni in food. Food Control 2017;73:1169–1175. DOI: https://doi.org/10.1016/j.foodcont.2016.10.033

Thung TY, Lee E, Mahyudin NA, Wan Mohamed Radzi CWJ, Mazlan N, Tan CW, et al. Partial characterization and in vitro evaluation of a lytic bacteriophage for biocontrol of Campylobacter jejuni in mutton and chicken meat. J Food Saf 2020;40(2):e12770. DOI: https://doi.org/10.1111/jfs.12770

Ranveer SA, Dasriya V, Ahmad MF, Dhillon HS, Samtiya M, Shama E, et al. Positive and negative aspects of bacteriophages and their immense role in the food chain. Sci Food 2024;8(1). DOI: https://doi.org/10.1038/s41538-023-00245-8

Picozzi C, Garcia P, Vives M. Editorial: Bacteriophages to fight food-borne pathogens/phages struggling for food safety. Frontiers Microbiol 2021;12:741387. DOI: https://doi.org/10.3389/fmicb.2021.741387

Jorquera D, Galarce N, Borie C. El desafío de controlar las enfermedades transmitidas por alimentos: bacteriófagos como una nueva herramienta biotecnológica. Rev Chil Infectol 2015;32(6):678–688. DOI: https://doi.org/10.4067/S0716-10182015000700010

Jaglan AB, Anand T, Verma R, Vashisth M, Virmani N, Bera BC, et al. Tracking the phage trends: A comprehensive review of applications in therapy and food production. Front Microbiol 2022;13:993990. DOI: https://doi.org/10.3389/fmicb.2022.993990

Huang Y, Wang W, Zhang Z, Gu Y, Huang A, Wang J, et al. Phage products for fighting antimicrobial resistance. Microorganisms 2022;10(7):1324. DOI: https://doi.org/10.3390/microorganisms10071324

Publicado

18.06.2025

Cómo citar

Talavera-González, J. M., Talavera-Rojas, M., Vega-Sánchez, V., & Varela-Guerrero, J. A. (2025). El uso de los bacteriófagos en la seguridad alimentaria y el control de patógenos. Revisión. Revista Mexicana De Ciencias Pecuarias, 16(2), 402–427. https://doi.org/10.22319/rmcp.v16i2.6737
Metrics
Vistas/Descargas
  • Resumen
    204
  • PDF
    93
  • PDF
    42
  • Texto completo
    46
  • Full text
    35

Número

Sección

Revisiones bibliográficas

Métrica

Artículos más leídos del mismo autor/a