Estimación de la composición química de granos y pastas proteicas mediante espectroscopia (NIRS-FTIR)
DOI:
https://doi.org/10.22319/rmcp.v16i2.6637Palabras clave:
Espectroscopía, Alimentos, CerdosResumen
El objetivo de este estudio fue utilizar la espectroscopía de reflectancia del infrarrojo cercano (NIRS) para estimar la composición química de ingredientes para cerdos. Se recolectaron muestras (n=118) de granos (maíz y sorgo) y harinas (soya y canola). Las muestras se analizaron para materia seca (MS), materia orgánica (MO), proteína cruda (PB), extracto etéreo (EE), fibra detergente neutro (FDN) o fibra detergente ácido (FDA), almidón total (almidón y energía bruta (EB) y fueron escaneadas con un espectrofotómetro FTIR. Con esta información, ecuaciones de calibración (ECS) fueron desarrolladas con el uso de un paquete de programa (TQ Analyst; Thermo Fisher Scientific). La selección de CE se basó en la minimización de los errores estándar de calibración (EEC), de la validación cruzada (EEVC) y de predicción (EEP), y la maximización de los coeficientes de determinación de la calibración (R2cal), y validación. (R2val). El poder predictivo de la ECS se evaluó mediante la estadística RPD (tasa/desviación de predicción). Excepto MS, las estadísticas de MO (0,99, 0,21, 0,39, 0,999, 0,34 y 7,3), PC (0,99, 0,62, 0,95, 0,998; 0,99 y 28,2), EE (0,98, 0,15, 0,31, 0,963, 0,22 y 3,7), FDN (0,98, 0,60, 1,82, 0,962; 1,38 y 3,6), ADF (0,99, 0,70, 1,43, 0,979, 1,04 y 4,6), almidón (0,99, 2,31, 3,34, 0,994; 3,03 y 9.7) y EB (0.98, 22.8, 34.9, 0.976; 36.0 y 4.2), R2cal, EE, EEVC, R2val, EEP y RPD, respectivamente, apoyan la conclusión de que los ECS tienen una capacidad predictiva aceptable de la composición química de ingredientes para la alimentación de cerdos.
Descargas
Citas
Paternostre L, Millet S, De Boever J. Comparison of feed tables, empirical models and near-infrared spectroscopy to predict chemical composition and net energy of pelleted pig feeds. Anim Feed Sci Technol 2023;297:115578. https://doi.org/10.1016/j.anifeedsci.2023.115578. DOI: https://doi.org/10.1016/j.anifeedsci.2023.115578
Cozzolino D. Uso de la espectroscopia de reflectancia en el infrarrojo cercano (NIRS) en el análisis de alimentos para animales. Agrociencia 2002;6(2):25-32.
Takahash M, Hajika M, Igita K, Sato T. Rapid estimation of protein, oil and moisture contents in whole-grain soybean seeds by near-infrared reflectance spectroscopy. In (eds Davies AMC, Williams PC) Near-infrared Spectroscopy: Future Waves. 7th Proc Int Conf Near-infrared Spectrosc 1996:494–497.
Ejaz I, He S, Li W, Hu N, Tang C, Li S, Li M, Diallo B, Xie G, Yu K. Sorghum grains grading for food, feed, and fuel using NIR spectroscopy. Front Plant Sci 2021;12:720022. doi:10.3389/fpls.2021.720022. DOI: https://doi.org/10.3389/fpls.2021.720022
Peiris KHS, Wu X, Bean SR, Perez-Fajardo M, Hayes C, Yerka MK, Jagadish SVK, Ostmeyer T, Aramouni FM, Tesso T, et al. Near infrared spectroscopic evaluation of starch properties of diverse sorghum populations. Processes 2021;9;1942. https://doi.org/10.3390/pr9111942. DOI: https://doi.org/10.3390/pr9111942
Ramírez RE, Anaya EAM, Mariscal LG. Predicción de la composición química del grano de sorgo mediante espectroscopía de reflectancia en el infrarrojo cercano (NIRS). Téc Pecu Méx 2005;43(1):1-11.
Noel SJ, Jørgensen HJH, Knudsen KEB. The use of near-infrared spectroscopy (NIRS) to determine the energy value of individual feedstuffs and mixed diets for pigs. Anim Feed Sci Technol 2022;283:115156. https://doi.org/10.1016/j.anifeedsci.2021.115156. DOI: https://doi.org/10.1016/j.anifeedsci.2021.115156
Thermo Fischer Scientific. TQ Analyst. User’s Guide. 2000-2007. Thermo Fischer Scientific Inc. Madison, WI, USA.
Williams P. Near Infrared Technology: Getting The best out of Light. SUN PRESS. 2019. DOI: https://doi.org/10.18820/9781928480310
Padhi SR, John R, Bartwal A, Tripathi K, Gupta K, Wankhede DP, Mishra GP, Kumar S, Rana JC, Riar A, Bhardwaj R. Development and optimization of NIRS prediction models for simultaneous multi-trait assessment in diverse cowpea germplasm. Front Nutr 2022;9:1001551. doi:10.3389/fnut.2022.1001551. DOI: https://doi.org/10.3389/fnut.2022.1001551
Tahmasbian I, Morgan NK, Hosseini BS, Dunlop MW, Moss AF. Comparison of hyperspectral imaging and near-infrared spectroscopy to determine nitrogen and carbon concentrations in wheat. Remote Sens 2021:13:1128. https://doi.org/ 10.3390/rs13061128. DOI: https://doi.org/10.3390/rs13061128
Forina M, Lanteri S, Casale M. Multivariate calibration. J Chromat A 2007;1158(1–2): 61-93. https://doi.org/10.1016/j.chroma.2007.03.082. DOI: https://doi.org/10.1016/j.chroma.2007.03.082
Stone M. Cross-validatory choice and assessment of statistical predictions. J Royal Stat Soc: Series B (Methodological). 1974;36(2):111-133. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x. DOI: https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
Zeaiter M, Rutledge D. Preprocessing methods. In: Brown SD, Tauler, Walczak B, editors. Comprehensive chemometrics. Elsevier. 2009;3.04:121-231. https://doi.org/10.1016/B978-044452701-1.00074-0. DOI: https://doi.org/10.1016/B978-044452701-1.00074-0
Nie Z, Tremblay GF, Bélanger G, Berthiaume R, Castonguay Y, Bertrand A, et al. Near-infrared reflectance spectroscopy prediction of neutral detergent-soluble carbohydrates in timothy and alfalfa. J Dairy Sci 2009;92(4):1702-11. doi:10.3168/jds.2008-1599. PMID:19307652. DOI: https://doi.org/10.3168/jds.2008-1599
Andueza D, Muñoz F, Murray I. The prediction of chemical composition and in vitro digestibility of samples of Atriplex halimus by NIR spectroscopy. In: Ben SH, et al editors. Nutrition and feeding strategies of sheep and goats under harsh climates. Zaragoza: CIHEAM, 2004:165-168 (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 59).
Manley, M. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. Chem Soc Rev 2014;43(24):8200-8214. doi =10.1039/C4CS00062E. DOI: https://doi.org/10.1039/C4CS00062E
SAS Institute. 2002-2010. SAS User’s Guide: Statistics. Version 9.4 TS Level 1M7 Edition. SAS Institute Inc., Cary, NC.
AOAC. Official methods of analysis. 17th ed. Association of Official Analytical Chemists, Arlington, VA. 2000.
AOAC. Official methods of analysis. 18th ed. Association of Official Analytical Chemists, Gaithersburg, Maryland, USA. 2005.
Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74(10):3583–3597. doi:10.3168/jds.S0022-0302(91)78551-2. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2
National animal nutrition program. Nat Res Supp Project (NRSP-9), USDA https://animalnutrition.org.
National Research Council. United States-Canadian tables of feed composition: Nutritional data for United States and Canadian feeds. Third Rev. Washington, DC: The National Academic Press. 1982. https://doi.org/10.17226/1713. DOI: https://doi.org/10.17226/1713
Tejada HI. Control de calidad y análisis de alimentos para animales. México, DF: Editorial Sistema de Educación Continua en Producción Animal; 1992.
Feedipedia. Animal feed resources information system. https://feedipedia.org.
Belanche A, Weisbjerg MR, Allison GG, Newbold CJ, Moorby JM. Measurement of rumen dry matter and neutral detergent fiber degradability of feeds by Fourier-transform infrared spectroscopy. J Dairy Sci 2014;97(4):2361-75. doi:10.3168/jds.2013-7491. Epub 2014 Feb 6. PMID: 24508438. DOI: https://doi.org/10.3168/jds.2013-7491
Parrini S, Acciaioli A, Crovetti A, Bozzi R. Use of FT-NIRS for determination of chemical components and nutritional value of natural pasture. Italian J Anim Sci 2018; 17(1):87-91, doi:10.1080/1828051X.2017.1345659. DOI: https://doi.org/10.1080/1828051X.2017.1345659
Díaz-Cruz JM, Esteban ME, Ariño C. Exploratory data analysis. In: Chemometrics in electroanalysis. Monographs in electrochemistry. Springer, Cham: 33-67. https://doi.org/10.1007/978-3-030-21384-8_3. DOI: https://doi.org/10.1007/978-3-030-21384-8_3
Givens D, De Boever J, Deaville E. The principles, practices and some future applications of near infrared spectroscopy for predicting the nutritive value of foods for animals and humans. Nutr Res Review 1997;10(1):83-114. https://doi:10.1079/NRR19970006. DOI: https://doi.org/10.1079/NRR19970006
John R, Bhardwaj R, Jeyaseelan C, Bollinedi H, Singh N, Harish GD, et al. Germplasm variability-assisted near infrared reflectance spectroscopy chemometrics to develop multi-trait robust prediction models in rice. Front Nutr 2022:946255.doi: 10.3389/fnut.2022.946255. DOI: https://doi.org/10.3389/fnut.2022.946255
Abrams SM, Shenk JS, Westerhaus MO, Barton FE. Determination of forage quality by near infrared reflectance spectroscopy: Efficacy of broad-based calibration equations. J Dairy Sci 1987;70:806-813. DOI: https://doi.org/10.3168/jds.S0022-0302(87)80077-2
Deaville ER, Flinn PC. Near-infrared (NIR) Spectroscopy: an alternative approach for the estimation of| forage quality and voluntary intake. Givens DI, Owen E et al, editors. Forage evaluation in ruminant nutrition. CABI, Pub, New York. 2000:301-320. DOI: https://doi.org/10.1079/9780851993447.0301
Chadalavada K, Anbazhagan K, Ndour A, Choudhary S, Palmer W, Flynn JR, et al. NIR instruments and prediction methods for rapid access to grain protein content in multiple cereals. Sensors 2022;22:3710. https://doi.org/10.3390/s22103710. DOI: https://doi.org/10.3390/s22103710
Ramos CR, Basurto GR, Ramírez RE, Reis de Souza TC, Mariscal LG. Predicción de la composición química de las heces y digesta ileal de cerdos mediante espectroscopia de reflectancia en el infrarrojo cercano (NIRS). Rev Mex Cienc Pecu 2023;14(3):488-503. doi:https://doi.org/10.22319/rmcp.v14i3.6175. DOI: https://doi.org/10.22319/rmcp.v14i3.6175
Büning-Pfaue H. Analysis of water in food by near infrared spectroscopy. Food Chemistry 2003;82(1):107-115. https://doi.org/10.1016/S0308-8146(02)00583-6. DOI: https://doi.org/10.1016/S0308-8146(02)00583-6
Parrini S, Acciaioli A, Franci O, Pugliese C, Bozzi R. Near infrared spectroscopy technology for prediction of chemical composition of natural fresh pastures, J Appl Anim Res 2019;47(1):514-520. doi:10.1080/09712119.2019.1675669. DOI: https://doi.org/10.1080/09712119.2019.1675669
Nieto-Ortega B, Arroyo JJ, Walk C, Castañares N, Canet E, Smith A. Near infrared reflectance spectroscopy as a tool to predict non-starch polysaccharide composition and starch digestibility profiles in common monogastric cereal feed ingredients. Anim Feed Sci Technol 2022;285:115214. https://doi.org/10.1016/j.anifeedsci.2022.115214. DOI: https://doi.org/10.1016/j.anifeedsci.2022.115214
Descargas
Publicado
Cómo citar
-
Resumen145
-
PDF72
-
PDF 48
-
Texto completo38
-
Full text 35
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores/as que publiquen en la Revista Mexicana de Ciencias Pecuarias aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Pecuarias reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.