Potential of a phytobiotic based on Acacia concinna and the red seaweed Palmaria palmata to reduce in vitro ruminal methane production

Autores/as

DOI:

https://doi.org/10.22319/rmcp.v16i2.6629

Palabras clave:

Gas production, Methanogenesis, Natural additive, VFA

Resumen

Changes in methane and carbon dioxide production and their effects on the ruminal microbiota were evaluated in vitro by incubating alfalfa with an herbal additive formulated with Acacia concinna and with a supplement containing red seaweed Palmaria palmata. The metabolites of the supplement with Palmaria palmata were characterized, and 20 chemical compounds were found, of which phenols, terpenes, halogenated compounds, and alkanes stood out. The inclusion of the herbal additive reduced (P<0.01) ruminal methane by 29 % and red seaweed by 56 %. The volatile fatty acid (VFA) molar concentration increased (P<0.05) with the seaweed additive. The two additives increased the proportions of acetate and propionate and reduced that of butyrate (P<0.05) compared to the control. No differences (P>0.05) were detected in the abundance of most microbial families, only minor changes in Rikenellaceae; just Cellulomonadaceae increased significantly (P>0.001) with the herbal additive. The two additives showed methane reductive potential, which was more pronounced for Palmaria palmata.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Benaouda M, González-Ronquillo M, Molina LT, Castelán-Ortega OA. Estado de la investigación sobre emisiones de metano entérico y estrategias de mitigación en América Latina. Rev Mex Cienc Agric 2017;8(4):965-74. DOI: https://doi.org/10.29312/remexca.v8i4.20

Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, et al. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front Vet Sci 2020;7. DOI: https://doi.org/10.3389/fvets.2020.00584

Sánchez-Hernández C, Castañeda-Gómez CJ, Trejo-Castro L, Mendoza-Martínez G, Gloria-Trujillo A. Evaluation of a feed plant additive for coocidiosis control in broilers herbals for coccidiosis control. Braz J Poult Sci 2019;21(01):eRBCA-2019-0846. DOI: https://doi.org/10.1590/1806-9061-2018-0846

Becker PM, van Wikselaar PG, Franssen MCR, de Vos RCH, Hall RD, Beekwilder J. Evidence for a hydrogen-sink mechanism of (+) catechin-mediated emission reduction of the ruminant greenhouse gas methane. J Metabolomics 2014;10(2):179-89. DOI: https://doi.org/10.1007/s11306-013-0554-5

Machado L, Tomkins N, Magnusson M, Midgley DJ, de Nys R, Rosewarne CP. In vitro response of rumen microbiota to the antimethanogenic red macroalga Asparagopsis taxiformis. Microb Ecol 2018;75(3):811-818. DOI: https://doi.org/10.1007/s00248-017-1086-8

Orzuna-Orzuna JF, Dorantes-Iturbide G, Lara-Bueno A, Mendoza-Martínez GD, Miranda-Romero LA, Hernández-García PA. Growth performance, carcass characteristics, and blood metabolites of lambs supplemented with a polyherbal mixture. Animals 2021;11(4):955. DOI: https://doi.org/10.3390/ani11040955

Lee-Rangel HA, Mendoza-Martinez GD, Martínez-García JA, Espinosa-Ayala E, Hernández-García PA, Cifuentes-López RO, et al. An Indian polyherbal phytogenic source improved blood serum biochemistry and immune response of dairy calves. Food Agric Immuno 2022;33(1):97-112. DOI: https://doi.org/10.1080/09540105.2021.2024150

Patra AK, Saxena J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010;71(11):1198-222. DOI: https://doi.org/10.1016/j.phytochem.2010.05.010

Zhou YY, Mao HL, Jiang F, Wang JK, Liu JX, McSweeney CS. Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep. Anim Feed Sci Technol 2011;166-167:93-100. DOI: https://doi.org/10.1016/j.anifeedsci.2011.04.007

Goel G, Makkar HPS. Methane mitigation from ruminants using tannins and saponins. Trop Anim Health 2012;44(4):729-739. DOI: https://doi.org/10.1007/s11250-011-9966-2

Ortiz D, Posada S, Noguera R. Efecto de metabolitos secundarios de las plantas sobre la emisión entérica de metano en rumiantes. Livest Res Rural Dev 2014;26(11).

Machado L, Magnusson M, Paul NA, de Nys R, Tomkins N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLOS One 2014;9(1):e85289. DOI: https://doi.org/10.1371/journal.pone.0085289

Roque BM, Salwen JK, Kinley R, Kebreab E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J Clean Prod 2019;234:132-138. DOI: https://doi.org/10.1016/j.jclepro.2019.06.193

Stefenoni HA, Räisänen SE, Cueva SF, Wasson DE, Lage CFA, Melgar A, et al. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. J Dairy Sci 2021;104(4):4157-4173. DOI: https://doi.org/10.3168/jds.2020-19686

Kinley RD, Tan S, Turnbull J, Askew S, Harris J, Roque BM. Exploration of methane mitigation efficacy using Asparagopsis-derived bioactives stabilized in edible oil compared to freeze-dried Asparagopsis in vitro. Am J Plant Sci 2022;13(7):1023-41. DOI: https://doi.org/10.4236/ajps.2022.137068

Ponte JMS, Seca AML, Barreto MC. Asparagopsis genus: What we really know about Its biological activities and chemical composition. Molecules 2022;27(6):1787. DOI: https://doi.org/10.3390/molecules27061787

Li X, Norman HC, Kinley RD, Laurence M, Wilmot M, Bender H, et al. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim Prod Sci 2018;58(4):681-688. DOI: https://doi.org/10.1071/AN15883

Kinley RD, Martinez-Fernandez G, Matthews MK, de Nys R, Magnusson M, Tomkins NW. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J Clean Prod 2020;259:120836. DOI: https://doi.org/10.1016/j.jclepro.2020.120836

Roque BM, Venegas M, Kinley RD, de Nys R, Duarte TL, Yang X, et al. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLOS One 2021;16(3):e0247820. DOI: https://doi.org/10.1371/journal.pone.0247820

Min BR, Parker D, Brauer D, Waldrip H, Lockard C, Hales K, et al. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities. Anim Nutr 2021;7(4):1371-1387. DOI: https://doi.org/10.1016/j.aninu.2021.10.003

Morais T, Inácio A, Coutinho T, Ministro M, Cotas J, Pereira L, et al. Seaweed potential in the animal feed: A review. J Mar Sci Eng 2020;8(8):559. DOI: https://doi.org/10.3390/jmse8080559

Molina-Alcaide E, Carro MD, Roleda MY, Weisbjerg MR, Lind V, Novoa-Garrido M. In vitro ruminal fermentation and methane production of different seaweed species. Anim Feed Sci Technol 2017;228:1-12. DOI: https://doi.org/10.1016/j.anifeedsci.2017.03.012

Werner A, Dring M. Cultivating Palmaria palmata: Irish Sea Fisheries Board Dublin; 2011.

Grote B. Recent developments in aquaculture of Palmaria palmata (Linnaeus) (Weber & Mohr 1805): cultivation and uses. Rev Aqua 2019;11(1):25-41. DOI: https://doi.org/10.1111/raq.12224

Yáñez-Ruiz DR, Bannink A, Dijkstra J, Kebreab E, Morgavi DP, O’Kiely P, et al. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Anim Feed Sci Technol 2016;216:1-18. DOI: https://doi.org/10.1016/j.anifeedsci.2016.03.016

Roque-Jiménez JA, Mendoza-Martínez GD, Vázquez-Valladolid A, Guerrero-González ML, Flores-Ramírez R, Pinos-Rodriguez JM, et al. Supplemental herbal choline increases 5-hmC DNA on whole blood from pregnant ewes and offspring. Animals 2020;10(8):1277. DOI: https://doi.org/10.3390/ani10081277

Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol 1994;48(3):185-197. DOI: https://doi.org/10.1016/0377-8401(94)90171-6

Menke HH, Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev 1988;28:7-55.

Bartha R, Pramer D. Features of a flask and method for measuring the persistence and biological effects of pesticides in soil. Soil Sci 1965;100(1):68-70. DOI: https://doi.org/10.1097/00010694-196507000-00011

Hegarty R, Leng R, Nolan JV. Measurement of methane production rate in the rumen using isotopic tracers. Springer; 2007.

Ramírez-Díaz R, Pinto-Ruiz R, Miranda-Romero LA, La O, Arias MA, Hernández-Sánchez D, et al. Predicción de metano de dos frutos arbóreos por cromatografía de gases y gas in vitro. Ecosis Recur Agropecu 2023;10(3). DOI: https://doi.org/10.19136/era.a10n3.3602

Erwin E, Marco GJ, Emery E. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J Dairy Sci 1961;144:1768–1771. DOI: https://doi.org/10.3168/jds.S0022-0302(61)89956-6

Mendoza-Martínez GD, Hernández-García PA, Díaz-Galván C, Razo-Ortiz PB, Ojeda-Carrasco JJ, Sánchez-López N, et al. Evaluation of Increasing dietary concentrations of a multi-enzyme complex in feedlot lambs’ rations. Animals 2024;14(8):1215. DOI: https://doi.org/10.3390/ani14081215

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 2016;13(7):581-583. DOI: https://doi.org/10.1038/nmeth.3869

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7(5):33533-6. DOI: https://doi.org/10.1038/nmeth.f.303

Herrera-Haro JG, García-Artiga C, Santoyo-Brito E. Bioestadística en ciencias veterinarias: Procedimientos de análisis de datos con SAS. Bioestadística en ciencias veterinarias: procedimientos de análisis de datos con SAS. 2010.

Pinos-Rodríguez JM, González-Muñoz SS, Mendoza-Martínez GD, Martínez-Garza Á. Análisis estadístico de experimentos de digestibilidad in vitro con forrajes. Interciencia 2002;27(3):143-146.

Mendoza-Martínez GD, Hernández-García PA, Plata-Pérez FX, Martínez-García JA, Arcos-García JL, Lee-Rangel HA. Nutrición animal cuantitativa. Editorial CBS. Universidad Autónoma Metropolitana. México. 2022.

Dijkstra J, Kebreab E, Bannink A, France J, López S. Application of the gas production technique to feed evaluation systems for ruminants. Anim Feed Sci Technol 2005;123-124:561-578. DOI: https://doi.org/10.1016/j.anifeedsci.2005.04.048

Pitta DW, Indugu N, Melgar A, Hristov A, Challa K, Vecchiarelli B, et al. The effect of 3-nitrooxypropanol, a potent methane inhibitor, on ruminal microbial gene expression profiles in dairy cows. Microbiome 2022;10(1):146. DOI: https://doi.org/10.1186/s40168-022-01341-9

Abbott DW, Aasen IM, Beauchemin KA, Grondahl F, Gruninger R, Hayes M, et al. Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals 2020;10(12):2432. DOI: https://doi.org/10.3390/ani10122432

Bunglavan S, Valli C, Ramachandran M, Balakrishnan V. Effect of supplementation of herbal extracts on methanogenesis in ruminants. Livest Res Rural Dev 2010;22(11):216.

Nayak S, Sahu S, Biswal MK, Dash S, Parida S, Pattanayak S. Eclipta alba L. derived phytochemicals against Campylobacter causing diarrhea. J Pharm Res Int 2020;32:108-111. DOI: https://doi.org/10.9734/jpri/2020/v32i730518

Fadipe L, Haruna A, Mohammed I. Antibacterial activity of 1, 2-benzenedicarboxylic acid, dioctyl ester isolated from the ethyl acetate soluble sub-portion of the unripe fruits of Nauclea latifolia. Int J Pure Appl Biosci 2014;2(1):223-230.

Akhbari M, Batooli H, Kashi FJ. Composition of essential oil and biological activity of extracts of Viola odorata L. from central Iran. Iran. Nat Prod Res 2012;26(9):802-809. DOI: https://doi.org/10.1080/14786419.2011.558013

Alexpandi R, Ponraj JG, Swasthikka RP, Abirami G, Ragupathi T, Jayakumar R, et al. Anti-QS mediated anti-infection efficacy of probiotic culture-supernatant against Vibrio campbellii infection and the identification of active compounds through in vitro and in silico analyses. Biocatal Agric Biotechnol 2021;35:102108. DOI: https://doi.org/10.1016/j.bcab.2021.102108

Yu J, Lei J, Yu H, Cai X, Zou G. Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata. Phytochemistry 2004;65(7):881-884. DOI: https://doi.org/10.1016/j.phytochem.2004.02.005

McAllister TA, Newbold CJ. Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric 2008;48(2):7-13. DOI: https://doi.org/10.1071/EA07218

Oremland RS, Capone DG. Use of “Specific” Inhibitors in biogeochemistry and microbial ecology. In: Marshall KC, editor. Adv Microb Ecol. Boston, MA: Springer US; 1988. DOI: https://doi.org/10.1007/978-1-4684-5409-3_8

Ugbogu EA, Elghandour MMMY, Ikpeazu VO, Buendía GR, Molina OM, Arunsi UO, et al. The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. J Clean Prod 2019;213:915-925. DOI: https://doi.org/10.1016/j.jclepro.2018.12.233

Kumar M, Kumar V, Roy D, Kushwaha R, Vaiswani S. Application of herbal feed additives in animal nutrition-a review. Int J Livest Res 2014;4(9):1-8. DOI: https://doi.org/10.5455/ijlr.20141205105218

Kuralkar P, Kuralkar SV. Role of herbal products in animal production – An updated review. J Ethnopharmacology 2021;278:114246. DOI: https://doi.org/10.1016/j.jep.2021.114246

Tajodini M, Moghbeli P, Saeedi H, Effati M. The effect of medicinal plants as a feedadditive in ruminant nutrition. Iran J Appl Anim Sci 2014;4(4).

Chathuranga K, Weerawardhana A, Dodantenna N, Ranathunga L, Cho WK, Ma JY, et al. Inhibitory effect of Sargassum fusiforme and its components on replication of respiratory syncytial virus in vitro and in vivo. Viruses 2021;13(4):548. DOI: https://doi.org/10.3390/v13040548

Amudha P, Jayalakshmi M, Pushpabharathi N, Vanitha V. Identification of bioactive components in Enhalus acoroides seagrass extract by gas chromatography-mass spectrometry. Asian J Pharm Clin Res 2018;11(10):313-315. DOI: https://doi.org/10.22159/ajpcr.2018.v11i10.25577

Farhan SR, AL-Azawi AH, Salih WY, Abdulhassan AA. The antibacterial and antioxidant activity of Moringa oleifera seed oil extract against some foodborne pathogens. Indian J Forensic Med Toxicol 2021;15(4):2529-2538. DOI: https://doi.org/10.37506/ijfmt.v15i4.17085

Uma B, Parvathavarthini R. Antibacterial effect of hexane extract of sea urchin, Temnopleurus alexandri (Bell, 1884). Int J Pharmtech Res 2010;2(3):1677-1680.

Sahinler N, Kaftanoglu O. Natural product propolis: chemical composition. Nat Prod Res 2005;19(2):183-188. DOI: https://doi.org/10.1080/14786410410001704877

Shaaban MT, Ghaly MF, Fahmi SM. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J Basic Microbiol 2021;61(6):557-568. DOI: https://doi.org/10.1002/jobm.202100061

Acevedo AM, Castañeda ML, Blanco KM, Cardenas CY, Reyes JA, Kouznetsov VV, et al. Composición y capacidad antioxidante de especies aromáticas y medicinales con alto contenido de timol y carvacrol. Sci Technol 2007;13(33):125-128.

Gallegos-Flores PI, Bañuelos-Valenzuela R, Delgadillo-Ruiz L, Meza-López C, Echavarría-Cháirez F. Actividad antibacteriana de cinco compuestos terpenoides: carvacrol, limoneno, linalool, α-terpineno y timol. Trop Subtrop Agroecosyst 2019;22(2):241-248. DOI: https://doi.org/10.56369/tsaes.2838

Du E, Gan L, Li Z, Wang W, Liu D, Guo Y. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. J Anim Sci Biotechnol 2015;6(1):58. DOI: https://doi.org/10.1186/s40104-015-0055-7

Di Pasqua R, Mamone G, Ferranti P, Ercolini D, Mauriello G. Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 2010;10(5):1040-1049. DOI: https://doi.org/10.1002/pmic.200900568

Mejia-Delgadillo M, Lee-Rangel H, Hernandez-Garcia P, Vazquez-Valladolid A, Mendez-Cortes H, Guerra-Liera J, et al. Effect of a polyherbal additive on performance and parasite infection of hair creole ewes. Indian J Anim Res 2021;1(1-5). DOI: https://doi.org/10.18805/IJAR.B-1370

Francis G, Kerem Z, Makkar HPS, Becker K. The biological action of saponins in animal systems: a review. Br J Nutr 2002;88(6):587-605. DOI: https://doi.org/10.1079/BJN2002725

Jard G, Marfaing H, Carrère H, Delgenes JP, Steyer JP, Dumas C. French Brittany macroalgae screening: Composition and methane potential for potential alternative sources of energy and products. Bioresour Technol 2013;144:492-498. DOI: https://doi.org/10.1016/j.biortech.2013.06.114

Van Soest P. Nutritional ecology of the ruminant: Cornell University Press; 1994. DOI: https://doi.org/10.7591/9781501732355

Ungerfeld EM. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front Microbiol 2020;11. https://doi.org/10.3389/fmicb.2020.00589 DOI: https://doi.org/10.3389/fmicb.2020.00589

De la Cruz Gómez AG, Campos-García H, Mendoza GD, García-López JC, Álvarez-Fuentes G, Hernández-García PA, et al. Macroalgae compound characterizations and their effect on the ruminal microbiome in supplemented lambs. Vet Sci 2024;11(12):653. DOI: https://doi.org/10.3390/vetsci11120653

Jenkins TC, Wallace RJ, Moate PJ, Mosley EE. Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Animal Sci 2008;86(2):397-412. DOI: https://doi.org/10.2527/jas.2007-0588

Ungerfeld EM. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Front Microbiol 2015;6. DOI: https://doi.org/10.3389/fmicb.2015.00037

Lindenmayer R, Lu L, Eivazi F, Afrasiabi Z. Atomic spectroscopy-based analysis of heavy metals in seaweed species. Appl Sci 2023;13(8):4764. DOI: https://doi.org/10.3390/app13084764

Choi Y, Lee S, Kim H, Eom J, Jo S, Guan L, et al. Red seaweed extracts reduce methane production by altering rumen fermentation and microbial composition in vitro. Front Vet Sci 2022;9. https://doi.org/10.3389/fvets.2022.985824 DOI: https://doi.org/10.3389/fvets.2022.985824

Terry SA, Krüger AM, Lima PMT, Gruninger RJ, Abbott DW, Beauchemin KA. Evaluation of rumen fermentation and microbial adaptation to three red seaweeds using the rumen simulation technique. Animals 2023;13(10):1643. DOI: https://doi.org/10.3390/ani13101643

O’Hara E, Terry SA, Moote P, Beauchemin KA, McAllister TA, Abbott DW, et al. Comparative analysis of macroalgae supplementation on the rumen microbial community: Asparagopsis taxiformis inhibits major ruminal methanogenic, fibrolytic, and volatile fatty acid-producing microbes in vitro. Front Microbiol 2023;14. DOI: https://doi.org/10.3389/fmicb.2023.1104667

Ahmed E, Suzuki K, Nishida T. Micro- and Macro-Algae combination as a novel alternative ruminant feed with methane-mitigation potential. Animals 2023;13(5):796. DOI: https://doi.org/10.3390/ani13050796

Mendoza-Martínez G, Plata-Pérez F, Espinosa-Cervantes R, Lara-Bueno A. Manejo nutricional para mejorar la eficiencia de utilización de la energía en bovinos. Universidad y Ciencia 2008;24(1):75-87.

Lee-Rangel H, Roque-Jiménez J, Cifuentes-López R, Álvarez-Fuentes G, Cruz-Gómez A, Martínez-García J, et al. Evaluation of three marine algae on degradability, in vitro gas production, and CH4 and CO2 emissions by ruminants. Fermentation 2022;8(10):511. DOI: https://doi.org/10.3390/fermentation8100511

Montel MC, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, et al. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int J Food Microbiol 2014;177:136-154. DOI: https://doi.org/10.1016/j.ijfoodmicro.2014.02.019

Geier RR, Kwon IH, Cann IK, Mackie RI. Interspecies hydrogen transfer and its effects on global transcript abundance in Ruminococcus albus, a predominant fiber-degrading species in the rumen. FASEB J 2016;30(S1):1102.1-.1. https://doi.org/10.1096/fasebj.30.1_supplement.1102.1. DOI: https://doi.org/10.1096/fasebj.30.1_supplement.1102.1

Ramírez-Bribiesca J. Eventos químicos-fisiológicos del metano en los rumiantes. Agro Productividad 2018;11(2).

Andrade BGN, Bressani FA, Cuadrat RRC, Cardoso TF, Malheiros JM, de Oliveira PSN, et al. Stool and ruminal microbiome components associated with methane emission and feed efficiency in Nelore beef cattle. Front Genet 2022;13. DOI: https://doi.org/10.3389/fgene.2022.812828

Bach A, López-García A, González-Recio O, Elcoso G, Fàbregas F, Chaucheyras-Durand F, et al. Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. J Dairy Sci 2019;102(7):6180-6198. DOI: https://doi.org/10.3168/jds.2018-16105

Publicado

18.06.2025

Cómo citar

Ponce-Pérez, O., Mendoza-Martínez , G. D., Hernández-García , P. A., Gloria-Trujillo , A., de la Torre-Hernández, M. E., Lee-Rangel , H. A., … Roque-Jiménez , J. A. (2025). Potential of a phytobiotic based on Acacia concinna and the red seaweed Palmaria palmata to reduce in vitro ruminal methane production. Revista Mexicana De Ciencias Pecuarias, 16(2), 254–274. https://doi.org/10.22319/rmcp.v16i2.6629
Metrics
Vistas/Descargas
  • Resumen
    200
  • PDF
    109
  • PDF
    43
  • Texto completo
    37
  • Full text
    40

Número

Sección

Artículos

Métrica

Artículos más leídos del mismo autor/a