Influence of the type of container and traditional methods on the long-term storage of honey produced by stingless Scaptotrigona mexicana: bioactive compounds and antioxidant properties

Autores/as

DOI:

https://doi.org/10.22319/rmcp.v15i2.6458

Palabras clave:

Antioxidant activity, Container, Honey, Scaptotrigona mexicana, Meliponine stingless bees

Resumen

Scaptotrigona mexicana honey is characterized by its nutritional and antioxidant properties, but it has a high moisture content that affects its stability during storage. The objective of this work was to evaluate the physicochemical and antioxidant properties by UV-Visible spectroscopy, profile of phenolic compounds by ultra-high performance liquid chromatography coupled to mass spectrometry and fatty acids and volatile compounds by gas chromatography coupled to mass spectrometry, minerals by microwave plasma atomic emission spectroscopy, from honey stored in different containers that, along with traditional methods, are commonly used to increase its stability. Most physicochemical and antioxidant properties were not significantly different from those of freshly harvested honey. The results suggest that the packaging with an exhaust check valve has a significant effect on the decrease in moisture content and water activity, but not on the physicochemical and antioxidant properties for at least 2 yr of storage. These results suggest that the type of container should be considered when storing honey as it significantly (P<0.05) affects its properties and quality.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Arzaluz GA, Obregon HF, Jones RW. Optimum brood size for artificial propagation of the stingless bee, Scaptotrigona mexicana. Journal of Apicultural Research 2002;41(1–2): 62–63. doi:10.1080/00218839.2002.11101070

Villacrés-Granda I, Coello D, Proaño A, Ballesteros I, Roubik DW, Jijón G, et al. Honey quality parameters, chemical composition and antimicrobial activity in twelve Ecuadorian stingless bees (Apidae: Apinae: Meliponini) tested against multiresistant human pathogens. LWT - Food Science and Technology 2021;140:110737. doi:10.1016/j.lwt.2020.110737

Martinez RA, Schvezov N, Brumovsky LA, Pucciarelli-Román AB. Influence of temperature and packaging type on quality parameters an antimicrobial properties during Yateí honey storage. Food Science and Technology 2017;38:196-202. doi:10.1590/1678-457X.17717

Carvalho CAL, Fonseca AAO, Souza BA, Clarton L. Physicochemical characteristics and sensory profile of honey samples from stingless bees (Apidae: Meliponinae) submitted to a dehumidification process. Annals of the Brazilian Academy of Sciences 2009;81:143–149. https://doi.org/10.1590/s0001-37652009000100015

Singh I, Singh S. Honey moisture reduction and its quality. Journal of Food Science and Technology 2018;55:3861–3871. doi:10.1007/s13197-018-3341-5

Mohamad-Ghazali NS, Yusof YA, Mohid-Ghazali H, Chin NL, Othaman SH, Manaf, YN, et al. Effect of surface area manipulation of clay pot vessel on physicochemical and microbiological properties of stingless bee (Geniotrigona thoracica) honey. Food Bioscience 2021;40:100839. doi:10.1016/j.fbio.2020.100839.

AOAC. Official Methods of Analysis. 17th Edition. Gaithersburg, MD, USA: The Association of Official Analytical Chemists,. 2000.

Biluca FC, Santos de Gois J, Schulz M, Braghini F, Gonzaga LV, Maltez HF, et al. Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis 2017;63:89–97. doi:10.1016/j.jfca.2017.07.039

Juárez-Trujillo N, Monribot-Villanueva JL, Alvarado-Olivarez M, Luna-Solano G, Guerrero-Analco JA, Jiménez-Fernández M. Phenolic profile and antioxidative properties of pulp and seed of Randia monantha Benth. Industrial Crops & Products 2018;124:53-58. doi:10.1016/j.indcrop.2018.07.052

López-López A, Castellote-Bargalló A, López-Sabater M. Comparison of two direct methods for the determination of fatty acids in human milk. Chromatographia 2001;54(11):743-747. doi:10.1007/BF02492493

Jiménez M, Beristain CI, Azuara E, Mendoza MR, Pascual LA. Physicochemical and antioxidant properties of honey from Scaptotrigona mexicana bee. Journal of Apicultural Research 2016;55(2):151-160. doi:10.1080/00218839.2016.1205294

Vit P, Medina M, Enríquez ME. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World 2004;85:2–5. doi:10.1080/0005772X.2004.11099603

Kowalski S. Changes of antioxidant activity and formation of 5-hydroxymethyfurfural in honey during thermal and microwave processing. Food Chemistry 2013;141:1378-1382. doi:10.1016/j.foodchem.2013.04.025

Braghini F, Biluca FC, Ottequir F, Gonzaga LV, da Silva M, Vitali L, et al. Effect of different storage conditions on physicochemical and bioactive characteristics of thermally processed stingless bee honey. LWT- Food Science and Technology 2020;131:109724. doi:10.1016/j.lwt.2020.109724

Vit P. Valorization of stingless bee (Meliponini) honey. Revista de la Facultad de Farmacia 2008;50(2):20-28.

Demera J, Angert E. Comparison of the antimicrobial activity of honey produced by Tetragonisca angustula (Meliponinae) and Apis mellifera from different phytogeographic regions of Costa Rica, Apidologie 2004;35(4). doi:10.1051/apido:2004033

Amin FAZ, Sabri S, Ismail M, Chan KW, Ismail N, Esa NM, et al. Probiotic properties of Bacillus strains isolated from stingless bee (Heterotrigona itama) honey collected across Malaysia. International Journal of Environmental Research and Public Health 2020;17(278):1–15. doi:10.3390/ijerph17010278

Machado De-Melo AA, Almeida-Muradian LBD, Sancho MT, Pascual-Maté A. Composition and properties of Apis mellifera honey: A review. Journal of Apicultural Research 2018;57(1), 5-37. doi:10.1080/00218839.2017.1338444.

Rice-Evans C, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine 1996;20:933-956. doi:10.1016/0891-5849(95)02227-9.

Vered T, Gad G. New Insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant 2010;3(6):956–972. doi:10.1199/tab.0132

Viera da Costa AC, Batista-Sousa JM, Pereida da Silva MAA, dos Santos D, Madruga MS. Sensory and volatile profiles of monofloral honeys produced by native stingless bees of the Brazilian semiarid region. Food Research International 2018;105:10–120. doi:10.1016/j.foodres.2017.10.043

Schievano E, Dettori A, Piana L, Tessari M. Floral origin modulates the content of a lipid marker in Apis mellifera honey. Food Chemistry 2021;130050. doi:10.1016/j.foodchem.2021.130050

Czipa N, Andrási D, Kovács B. Determination of essential and toxic elements in Hungarian honeys. Food Chemistry 2015;175:536–542. doi:10.1016/j.foodchem.2014.12.018

Velimirović D, Tošić S, Mitić S, Pavlović A, Rašić-Mišić I, Stojanović G. Mineral, phenolic content and antioxidant activity of selected honey simples consumed in Serbia. Journal Apicultural Research 2021. doi:10.1080/00218839.2021.1898783

Publicado

23.04.2024

Cómo citar

Juárez-Trujillo, N., Carrouché, S., Mendoza-López, M. R., Monribot-Villanueva, J. L., Guerrero-Analco, J. A., & Jiménez-Fernández, M. (2024). Influence of the type of container and traditional methods on the long-term storage of honey produced by stingless Scaptotrigona mexicana: bioactive compounds and antioxidant properties. Revista Mexicana De Ciencias Pecuarias, 15(2), 323–343. https://doi.org/10.22319/rmcp.v15i2.6458
Metrics
Vistas/Descargas
  • Resumen
    1023
  • PDF
    99
  • PDF
    39
  • Texto completo
    22
  • Full text
    17

Número

Sección

Artículos

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.