Efectos genéticos aditivos y no aditivos para características reproductivas en dialelo Holstein-Suizo Pardo en clima subtropical húmedo
Resumen
El cruzamiento permite aprovechar las diferencias genéticas aditivas entre razas, también permiten hacer uso de la heterosis y de la complementariedad. Por lo tanto, se necesita generar información de la eficacia de las cruzas en comparación con las razas puras, bajo las condiciones de interés. El objetivo fue cuantificar el impacto de los efectos genéticos aditivos y no aditivo para días a primer estro (DPE), días a primer servicio (DPS), días abiertos (DA), servicios por concepción (SPC), intervalo entre partos (IP) y duración de la gestación (DG). Se utilizó la información productiva y genealógica de hembras provenientes de un dialelo entre Holstein (HO) y Suizo Pardo (SP), un total de 148 vacas de las razas HO (n=43), SP (n=64) y sus cruzas reciprocas HO-SP (n=20) y SP-HO (n=21). Se utilizaron contrastes para estimar la heterosis individual y las diferencias entre los efectos genéticos directos y entre los efectos genéticos maternos con base en los modelos de Dickerson. Los resultados mostraron que la heterosis y las diferencias entre los efectos maternos no fueron significativos (P>0.05) para ninguna de las características estudiadas. Las diferencias entre efectos genéticos directos solo fueron importantes (P<0.05) para SPC y DG. En conclusión, la heterosis generada por el cruzamiento entre HO y SP no influyó sobre la eficiencia reproductiva de las hembras. Los efectos maternos no fueron diferentes entre HO y SP. Los efectos genéticos directos para SPC y DG favorecieron a la raza SP.
Palabras clave
Referencias
Harris BL, Kolver ES. Review of holsteinization on intensive pastoral dairy farming in NZ J Dairy Sci 2001;84(E.Suppl.):E56–E61. https://doi.org/10.3168/jds.S0022-0302(01)70197-X.
Blöttner S, Heins BJ, Wensch-Dorendorf M, Hansen LB, Swalve HH. Brown Swiss × Holstein crossbreds compared with pure Holsteins for calving traits, body weight, backfat thickness, fertility, and body measurements. J Dairy Sci 2011;94(2):1058–1068. https://doi.org/10.3168/jds.2010-3305.
Hare E, Norman HD, Wright JR. Survival rates and productive herd life of dairy cattle in the United States. J Dairy Sci 2006;89(9):3713–3720.
Seegers H, Fourichon C, Beaudeau F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res 2003;34(5):475–491. doi:10.1051/vetres:2003027.
Windig JJ, Calus MPL, Veerkamp RF. Influence of herd environment on health and fertility and their relationship with milk production. J Dairy Sci 2005;88(1):335–347. doi: 10.3168/jds.S0022-0302(05)72693-X.
Rauw WM, Kanis E, Noordhuizen EN, Grommers FJ. Undesirable side effects of selection for high production efficiency in farm animals. Livest Prod Sci 1998;56(1):13–33. https://doi.org/10.1016/S0301-6226(98)00147-X.
Mark T. Applied genetic evaluations for production and functional traits in dairy cattle. J Dairy Sci 2004;87(8):2641–2652. https://doi.org/10.3168/jds.S0022-0302(04)73390-1.
Miglior F, Muir BL, Van Doormaal BJ. Selection indices in Holstein cattle of various countries. J Dairy Sci 2005;88(3):1255–1263. https://doi.org/10.3168/jds.S0022-0302(05)72792-2.
Pryce JE, Royal MD, Garnsworthy PC, Mao IL. Fertility in the high-producing dairy cow. Livest Prod Sci 2004;86(1-2):125–135. https://doi.org/10.1016/S0301-6226(03)00145-3.
Sørensen MK, Norberg E, Pedersen J, Christensen LG. Crossbreeding in dairy cattle: A Danish Perspective. J Dairy Sci 2008;91(11):4116–4128. https://doi.org/10.3168/jds.2008-1273.
Willham RL. Genetic consequences of crossbreeding. J Anim Sci 1970;30(5):690–693. https://doi.org/10.2527/jas1970.305690x.
Swan AA, Kinghorn BP. Evaluation and exploitation of crossbreeding in dairy cattle. J Dairy Sci 1992;(75):624–639. https://doi.org/10.3168/jds.S0022-0302(92)77800-X.
Wakchaure R, Ganguly S, Praveen K, Sharma S, Kumar A, Mahajan T, Qadri K. Importance of heterosis in animals: A Review. In: Int J Adv Engineering Technol Innovative Sci 2015;1(1):1-5. ISSN:2455-1651.
Mingroni MA. Resolving the IQ paradox: heterosis as a cause of the Flynn effect and other trends. Psychol Rev 2007;114(3):806–829. doi: 10.1037/0033-295X.114.3.806.
Notter DR, Scherf B, Hoffmann I. Breeding of animals. In: SA Levin, editor. Encyclopedia of biodiversity. 2nd ed. New York, USA: Elsevier; 2013:636–649.
Scott P. Crossbreeding beef cattle. Extension Animal Scientist, Virginia Tech 2009;400-805.
Vandana Y, Narendra PS, Anjali K, Rahul S, Aamrapali B, Sourabh S. Effects of crossbreeding in livestock. The Pharma Innovat J 2018;7(6):672-676.
Getahun D, Alemneh T, Akeberegn D, Getabalew M, Zewdie D. Importance of hybrid vigor or heterosis for animal breeding. Biochem Biotechnol Res 2015;7(1):1-4.
Ríos-Utrera Á, Zárate-Martínez JP, Vega-Murillo VE, Enríquez-Quiroz JF, Montero-Lagunes M, Barradas-Piña FT, Valdovinos-Terán ME. Effect of the percentage of Bos taurus inheritance on the fertility of Holstein×Zebu and Brown Swiss×Zebu cows in the Mexican tropics. Rev Colomb Cienc Pecu 2022;35(2):68–81. https://doi.org/10.17533/udea.rccp.v35n2a05.
García E. Modificaciones al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México. México. 1998:59-75.
Sistema Institucional de Monitoreo Agroclimático. Datos climatológicos de la Sierra Nororiente del estado de Puebla. Estación Meteorológica “Las Margaritas”. INIFAP 2007.
Hafez ESE, Hafez B. Reproducción e inseminación artificial de los animales domésticos. 7ª. ed. Distrito Federal, México: McGraw-Hill Interamericana; 2002.
SAS. SAS/STAT® (versión 9.3) User’s guide. Cary, NC: SAS Institute Inc.
Dickerson GE. Experimental approaches in utilizing breed resources. Anim Breed Abstr 1969;37: 191-202.
Dickerson GE. Inbreeding and heterosis in animals. In: Proc Anim Breed Genetics Symp in honor of Dr. J. L. Lush. Am Soc Anim Sci, Am Dairy Sci Assoc. Champaign, IL.1973.
Butler WR. Effect of protein nutrition on ovarian and uterine physiology in dairy cattle. J Dairy Sci 1998;81(9):2533- 2539. https://doi.org/10.3168/jds.S0022-0302(98)70146-8.
Lucy MC. Reproductive loss in high-producing dairy cattle: where will it end? J Dairy Sci 2001;84(6):1277–1293. https://doi.org/10.3168/jds.s0022-0302(01)70158-0.
Roche JF. The effect of nutritional management of the dairy cow on reproductive efficiency. Anim Reprod Sci 2006;96(3–4):282–296. https://doi.org/10.1016/j.anireprosci.2006.08.007.
Miqueo E, Chiarle A, Giuliodori MJ, Relling AE. Association between prepartum metabolic status and resumption of postpartum ovulation in dairy cows. Domest Anim Endocrinol 2019;(69):62–67. https://doi.org/10.1016/j.domaniend.2019.04.005.
Schuermann Y, Welsford GE, Nitschmann E, Wykes L, Duggavathi R. Association between pre-breeding metabolic profiles and reproductive performance in heifers and lactating dairy cows. Theriogenology 2019;(131)79–88. https://doi.org/10.1016/j.theriogenology.2019.03.018.
Bejarano D, Pedraza A, Rocha JFM, Martínez R. Variabilidad genética en subpoblaciones comerciales de la raza criolla colombiana Romosinuano. Corpoica Cienc Tecnol Agropecu 2012;13(1):97–107. https://doi.org/10.21930/rcta.vol13_num1_art:246.
Haile-Mariam M, Kassa-Mersha H. Genetic and environmental effects on age at first calving and calving interval of naturally bred Boran (zebu) cows in Ethiopia. Anim Sci J 1954;58(3):329-334. doi:10.1017/S000335610000725X.
Haile-Mariam M, Carrick MJ, Goddard ME. Genotype by environment interaction for fertility, survival, and milk production traits in Australian dairy cattle. J Dairy Sci 2008; 91(12):4840-4853. https://doi.org/10.3168/jds.2008-1084.
Hundie D, Beyene F, Duguma G. Early Growth and reproductive performances of Horro cattle and their F1 Jersey crosses in and around Horro-Guduru. Sci Technol Arts Res J 2013;2(3):134-141. https://doi.org/10.4314/star.v2i3.98752.
Niraj K, Alemayehu E, Berihu G, Endale BG. Reproductive performance of indigenous and HF crossbred dairy cows in Gondar, Ethiopia. J Agric Vet Sci 2014;7(1):56-61. https://doi.org/10.9790/2380-07155661.
Assemu T. Estimation of genetic and no genetic parameters for growth and reproductive performance traits of Fogera cattle breed [Thesis for MSc]. Bahir Dar, Ethiopia: Bahir Dar University; 2015.
Magaña JG, Segura-Correa JC. Estimates of breed and heterosis effects for some reproductive traits of Brown Swiss and Zebu-related breeds in South-eastern Mexico. Livest Res Rural Dev 2001;13(49). http://www.lrrd.org/lrrd13/5/maga135.htm.
Lammoglia VMA, Ávila GJ, Alarcón ZMA, Cabrera NA, Gutiérrez RA, Daniel RI. Productive and reproductive performance of dairy cows in their first crossbreeding rotational program in the Mexican Plateau. Vet Méx 2013;44(1):17-22. http://www.redalyc.org/articulo.oa?id=42327031002.
Schaeffer LR, Burnside EB, Glover P, Fatehi J. Crossbreeding results in Canadian dairy cattle for production, reproduction and conformation. Open Agric J 2011;5(1):63-72. https://doi.org/10.2174/1874331501105010063.
Abdalla H, El-Tarabany MS. Reproductive performance of Holstein, Brown Swiss and their crosses under subtropical environmental conditions with brief reference to milk yield. Glob Vet 2014;13(5):836-843. DOI: 10.5829/idosi.gv.2014.13.05.86193.
Heins BJ, Hansen LB, Seykora AJ, Johnson DG, Linn JG, Romano JE, Hazel AR. Crossbreds of Jersey × Holstein compared with pure Holsteins for production, fertility, and body and udder measurements during first lactation. J Dairy Sci 2008;91(3):1270–1278. https://doi.org/10.3168/jds.2007-0564.
El-Tarabany MS, Nasr MAF. Reproductive performance of Brown Swiss, Holstein and their crosses under subtropical environmental conditions. Theriogenology 2015;84(4): 559–565. doi:10.1016/j.theriogenology.2015.04.012.
García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van Tassell CP. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci 2016;113:E3995–E4004. https://doi.org/10.1073/pnas.1519061113.
Hagan BA, Moro-Mendez J, Cue RI. Realized genetic selection differentials in Canadian Holstein dairy herds. J Dairy Sci 2020;103:1651–1666. https://doi.org/10.3168/jds.2019-16890.
Mrode RA, Thompson R. Linear models for the prediction of animal breeding values. Malta, Gutenberg Press; 2012.
Moore SG, Hasler JF. A 100-Year Review: Reproductive technologies in dairy science. J Dairy Sci 2017;100(12):10314–10331. doi: 10.3168/jds.2017-13138.
Parland S, Kearney JF, Rath M, Berry DP. Inbreeding effects on milk production, calving performance, fertility, and conformation in Irish Holstein-Friesians. J Dairy Sci 2007; 90(9):4411–4419. doi: 10.3168/jds.2007-0227.
Howard JT, Pryce JE, Baes C, Maltecca C. Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. J Dairy Sci 2017;100(8):6009–6024. doi: 10.3168/jds.2017-12787.
Weigel KA, Lin SW. Use of computerized mate selection programs to control inbreeding of Holstein and Jersey cattle in the next generation. J Dairy Sci 2000;83(4):822-828. doi: 10.3168/jds.S0022-0302(00)74945-9.
Macedo AA, Bittar JFF, Bassi PB, Ronda JB, Bittar ER, Panetto JCC, et al. Influence of endogamy and mitochondrial DNA on immunological parameters in cattle. BMC Vet Res 2014;10:79. doi:10.1186/1746-6148-10-79.
Doekes HP, Veerkamp RF, Bijma P, De Jong G, Hiemstra SJ, Windig JJ. Inbreeding depression due to recent and ancient inbreeding in Dutch Holstein-Friesian dairy cattle. Genet Sel Evol 2019;51(1):54. doi:10.1186/s12711-019-0497-z.
Tewodros B. Assessment of productive and reproductive performance of indigenous and crossbred cattle under smallholder management system in north Gondar, Amhara region. [Thesis for MSc]. Mekele, Ethiopia. Mekele University; 2008.
González TM, Ossa SG, Pérez GJ. Duración de la gestación en el ganado bovino criollo costeño con cuernos. Rev Colombiana Cienc Anim 2016;8(2):224–227. DOI:10.24188/recia.v8.n2.2016.191.
Dechow CD, Rogers GW, Cooper JB, Phelps MI, Mosholder AL. Milk, fat, protein, and somatic cell score and days open among Holstein, Brown Swiss and their crosses. J Dairy Sci 2007;90(7):3542–3549. https://doi.org/10.3168/jds.2006-889.
Knob DA, Scholz AM, Alessio DRM, Mendes BPB, Perazzoli L, Kappes R, Neto AT. Reproductive and productive performance, udder health, and conformation traits of purebred Holstein, F1, and R1 crossbred Holstein × Simmental cows. Trop Anim Health Prod 2020;52(4):1639–1647. https://doi.org/10.1007/s11250-019-02174-9.
Mlynek K, Glowinska B, Salomonczyk E, Tkaczuk J, Stys W, 2018. The effect of daily milk production on the milk composition and energy management indicators in Holstein–Friesian and Simmental cows. Turkish J Veter Anim Sci 2018;42(4):223–229. DOI:10.3906/vet-1711-31.
Piccand V, Cutullic E, Meier S, Schori F, Kunz PL, Roche JR, Thomet P. Production and reproduction of Fleckvieh, Brown Swiss, and 2 strains of Holstein-Friesian cows in a pasture-based, seasonal-calving dairy system. J Dairy Sci 2013;96(8):5352-63. doi: 10.3168/jds.2012-6444.
Li L, Lu K, Chen Z, Mu T, Hu Z, Li X. Dominance, over dominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 2008;180(3):1725-1742. doi: 10.1534/genetics.108.091942.
Cassell B. Mechanisms of inbreeding depression and heterosis for profitable dairying. Virginia Polytechnic Institute and State University 2017; Blacksburg: 1-5.
Jönsson R. Estimation of heterosis and performance of crossbred Swedish dairy cows [Master’s Thesis] Uppsala, Sweden: University of Agricultural Science; 2015.
Clasen JB, Norberg E, Madsen P, Pedersen J, Kargo M. Estimation of genetic parameters and heterosis for longevity in crossbred Danish dairy cattle. J Dairy Sci 2017;100(8):6337-6342. doi: 10.3168/jds.2017-12627.
DOI: https://doi.org/10.22319/rmcp.v14i3.6247
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2023

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.