Ixodicide action of natural products from native Mexican plants


  • Javier Sosa-Rueda Universidad Veracruzana. Facultad de Medicina Veterinaria y Zootecnia. Miguel Ángel de Quevedo s/n, 91710, Veracruz, Veracruz, México. https://orcid.org/0000-0002-3469-6259
  • Fabiola Villarauz Universidad Veracruzana. Facultad de Bioanálisis. Iturbide s/n, 91700, Veracruz, Veracruz, México. https://orcid.org/0000-0001-6480-8250
  • Vanihamin Domínguez-Meléndez Universidad Veracruzana. Centro de Estudios y Servicios en Salud, Veracruz, México. https://orcid.org/0000-0002-8371-7781
  • Ida Soto-Rodríguez Universidad Veracruzana. Facultad de Bioanálisis. Iturbide s/n, 91700, Veracruz, Veracruz, México.
  • Fernando C. López-Fentanes Universidad Veracruzana. Facultad de Bioanálisis. Iturbide s/n, 91700, Veracruz, Veracruz, México. https://orcid.org/0000-0002-3281-9358
  • David I. Martínez-Herrera Universidad Veracruzana. Facultad de Medicina Veterinaria y Zootecnia. Miguel Ángel de Quevedo s/n, 91710, Veracruz, Veracruz, México.
  • Álvaro Peniche-Cardeña Universidad Veracruzana. Facultad de Medicina Veterinaria y Zootecnia. Miguel Ángel de Quevedo s/n, 91710, Veracruz, Veracruz, México. https://orcid.org/0000-0002-7767-9053
  • Francisco Cen-Pacheco Universidad Veracruzana. Facultad de Bioanálisis. Iturbide s/n, 91700, Veracruz, Veracruz, México. https://orcid.org/0000-0001-8506-2435



Palabras clave:

Mexican plants, Acaricidal screening, Azadirachta indica, Ixodicide metabolites


This work determined the acaricidal effect of 18 Mexican plants against Rhipicephalus microplus. The results of the larvicidal assay revealed that 5 methanolic extracts produced high activity (86-100 % mortality), 3 extracts exhibited relatively high activity (71-85 % mortality), 2 extracts displayed moderate activity (56-70 % mortality), 2 extracts presented low activity (31-55 % mortality) and 6 extracts showed non-significant acaricidal activity (0-30 % mortality). Extracts inducing >56 % mortality were subsequently assayed against engorged ticks of R. microplus by adult immersion test at a concentration of 5.0% w/v. In general terms, the results on larvae and adult ticks indicated that the methanolic extracts of Annona globiflora, Annona scleroderma, Litchi chinensis and Azadirachta indica showed the greatest activities. The crude extract of A. indica was subjected to chromatographic purification, which has led to the isolation of 3-O-butyl-(-)-epigallocatechin (1), 3-O-butyl-(-)-epicatechin (2), (-)-epigallocatechin (3), (+)-gallocatechin (4), (-)-epicatechin (5), β-sitosterol (6), stigmasterol (7), stigmasterol glucoside (8), triolein (9), azadirachtin A (10), and the octadecanoic acid-tetrahydrofuran-3,4-vinyl ester (11). The isolated compounds' chemical structures were identified by the interpretation of NMR and HRESI-MS spectroscopic data. The isolated compounds were assayed against engorged ticks of R. microplus at a concentration of 6 mM. Based on the results obtained, it was concluded that 3-O-butyl-(-)-epigallocatechin (1), 3-O-butyl-(-)-epicatechin (2), azadirachtin A (10), and octadecanoic acid-tetrahydrofuran-3,4-vinyl ester (11) show the highest effectiveness.


Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Javier Sosa-Rueda, Universidad Veracruzana. Facultad de Medicina Veterinaria y Zootecnia. Miguel Ángel de Quevedo s/n, 91710, Veracruz, Veracruz, México.

Francisco Cen culminó sus estudios de licenciatura como QFB en la Universidad Autónoma de Yucatán en 2004 y su tesis doctoral en la Universidad de La Laguna en Tenerife, España en 2010. realizó dos estancias postdoctorales en España, en el Laboratorio de Fabricación de Patrones Toxicológicos y el Consejo Superior de Investigaciones. Recibió la distinción de investigador en el programa de repatriaciones del CONACyT, lo que le permitió incorporarse en 2013 a la Universidad Veracruzana. Su área de investigación es el estudio de productos naturales de origen marino y terrestre, así como el desarrollo de metodologías computacionales para determinar la configuración, conformación de metabolitos secundarios e interacción receptor-ligando.


Nunes de Santana CR, Nascimento LCB, Passos OA, Albano AAP, Fitzgerald BA, Barreto AP, et al. Acaricidal properties of vetiver essential oil from Chrysopogon zizanioides (Poaceae) against the tick species Amblyomma cajennense and Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet Parasitol 2015;212(3-4):324-330. http://dx.doi.org/10.1016/j.vetpar.2015.08.022.

Rodríguez-Vivas RI, Apanaskevich DA, Ojeda-Chi MM, Trinidad-Martínez I, Reyes-Novelo E, Esteve-Gassent MD, Pérez de León AA. Ticks collected from humans, domestic animals, and wildlife in Yucatan, Mexico. Vet Parasitol 2016;15(215):106-113. http://dx.doi.org/10.1016/j.vetpar.2015.11.010.

Fouche G, Ramafuthula M, Maselela V, Mokoena M, Senabe J, Leboho T, et al. Acaricidal activity of the organic extracts of thirteen South African plants against Rhipicephalus (Boophilus) decoloratus (Acari: Ixodidae). Vet Parasitol 2016;224:324-330. http://dx.doi.org/10.1016/j.vetpar.2016.05.011.

Rodriguez-Vivas RI, Jonsson NN, Bhushan C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol Res 2018;117(1):3-29. http://dx.doi.org/10.1007/s00436-017-5677-6.

Perez-Cogollo LC, Rodriguez-Vivas RI, Ramirez-Cruz GT, Rosado-Aguilar JA. Survey of Rhipicephalus microplus resistance to ivermectin at cattle farms with history of macrocyclic lactones use in Yucatan, Mexico. Vet Parasitol 2010;172:109-113. http://dx.doi.org/10.1016/j.vetpar.2010.04.030.

Fernández-Salas A, Rodríguez-Vivas RI, Alonso-Díaz MA. First report of a Rhipicephalus microplus tick population multi-resistant to acaricides and ivermectin in the Mexican tropic. Vet Parasitol 2012;183(3-4):336-342. http://dx.doi.org/10.1016/j.vetpar.2011.07.028.

Rodríguez-Vivas RI, Miller RJ, Ojeda-Chi MM, Rosado-Aguilar JA, Trinidad-Martínez IC, Pérez de León AA. Acaricide and ivermectin resistance in a field population of Rhipicephalus microplus (Acari: Ixodidae) collected from red deer (Cervus elaphus) in the Mexican tropics. Vet Parasitol 2014;200(1-2):179-188. http://dx.doi.org/10.1016/j.vetpar.2013.11.025.

Magadum S, Mondal DB, Ghosh S. Comparative efficacy of Annona squamosa and Azadirachta indica extracts against Boophilus microplus Izatnagar isolate. Parasitol Res 2009;105:1085-1091. http:// dx.doi.org/10.1007/s00436-009-1529-3.

Borges LMF, Sousa LAD, Barbosa CS. Perspectives for the use of plant extracts to control the cattle tick Rhipicephalus (Boophilus) microplus. Rev Bras Parasitol Vet 2011;20:89-96. http://dx.doi.org/10.1590/S1984-29612011000200001.

Benelli G, Pavela R, Canale A, Mehlhorn H. Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res 2016;115:2545-2560. http:// dx.doi.org/10.1007/s00436-016-5095-1.

Adenubi OT, Fasina FO, McGaw LJ, Eloff JN, Naidoo V. Plant extracts to control ticks of veterinary and medical importance: A review. S African J Bot 2016;105:178-193. http://dx.doi.org/10.1016/j.sajb.2016.03.010.

Pavela R, Canale A, Mehlhorn H, Benelli G. Application of ethnobotanical repellents and acaricides in prevention, control and management of livestock ticks: A review. Res Vet Sci 2016;109:1-9. http://dx.doi.org/10.1016/j.rvsc.2016.09.001.

Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016;79(3):629-661. https://doi.org/10.1021/acs.jnatprod.5b01055.

Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021;38(2):362-413 and previous articles in the same series. https://doi.org/10.1039/D0NP00089B.

Misra R. Modern drug development from traditional medicinal plants using radioligand receptor-binding assays. Med Res Rev 1998;6(18):383-402. https://doi.org/10.1002/(SICI)1098-1128(199811)18:6%3C383::AID-MED3%3E3.0.CO;2-A.

Phillipson JD. Phytochemistry and medicinal plants. Phytochemistry 2001;56(3):237-43. https://doi.org/10.1016/s0031-9422(00)00456-8 .

Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A Comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites 2019;9(11):258. https://doi.org/10.3390/metabo9110258 .

Atawodi SE, Atawodi JC. Azadirachta indica (neem): a plant of multiple biological and pharmacological activities. Phytochem Rev 2009;8:601-620. https://doi.org/10.1007/s11101-009-9144-6.

Van der Nat JM. Van der Sluis W G, Silva KT, Labadie RP. Ethnopharmacognostical survey of Azadirachta indica A. Juss (Meliaceae). J Ethnopharmacol 1991;35(1):1-24. https://doi.org/10.1016/0378-8741(91)90131-v .

Patil SM, Shirahatti PS, Chandana KVB, Ramu R, Nagendra PMN. Azadirachta indica A. Juss (neem) as a contraceptive: an evidence-based review on its pharmacological efficiency. Phytomedicine 2021;15(88):153596. https://doi.org/10.1016/j.phymed.2021.153596.

Sultana B, Anwar F, Przybylsky R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. Trees. Food Chem 2007;104:1106-1114. https://doi.org/10.1016/j.foodchem.2007.01.019 .

Kitdamrongtham W, Ishii K, Ebinab K, Zhang J, Ukiya M, Koike K, Akazawaa H, Manosroia A, Manosroi J, Akihisa T. Limonoids and flavonoids from the flowers of Azadirachta indica var. siamensis, and their melanogenesis-inhibitory and cytotoxic activities. Chem & Biodiversity 2014;11:73-84. https://doi.org/10.1002/cbdv.201300266

Kanwal Q, Hussain I, Siddiqui HL, Javaid A. Antimicrobial activity screening of isolated flavonoids from Azadirachta indica leaves J Serbian Chem Soc 2011;76(3):375-384. https://doi.org/10.2298/JSC100406027K.

Cen-Pacheco F, Ortiz-Celiseo A, Peniche-Cardeña A, Bravo-Ruiz O, López-Fentanes FC, Valerio-Alfaro G, Fernández JJ. Studies on the bioactive flavonoids isolated from Azadirachta indica. Nat Prod Res 2020;5:1-9. https://doi.org/10.1080/14786419.2019.1579808.

Kupchan SM, Tsou G, Sigel CW. Datiscacin, a novel cytotoxic cucurbitacin 20-acetate from Datisca glomerata. J Org Chem 1973;38(7):1420-1421. https://doi.org/10.1021/jo00947a041.

Ortiz-Celiseo A, Valerio-Alfaro G, Sosa-Rueda J, López-Fentanes FC, Domínguez-Melendez V, Cen-Pacheco F. Ectyoplasin, a novel cytotoxic cyclic peptide from Ectyoplasia ferox sponge. Nat Prod Res 2021; Published online. https://doi.org/10.1080/14786419.2021.1902326 .

Cen-Pacheco F, Valerio-Alfaro G, Santos-Luna D, Fernández JJ. Sclerin, a new cytotoxic cyclononapeptide from Annona scleroderma. Molecules 2019;24(3):554. https://doi.org/10.3390/molecules24030554.

Shaw RD, Cook M, Carson RE. Developments in the resistance status of the southern cattle tick to organophosphorus and carbamate insecticides. J Econ Entomol 1968;61:1590-1594. https://doi.org/10.1093/jee/61.6.1590.

Fernández-Salas A, Rodríguez-Vivas I, Alonso-Díaz MA. Resistance of Rhipicephalus microplus to amitraz and cypermethrin in tropical cattle farms in Veracruz, Mexico. J Parasitol 2012;98(5):1010-1014. https://doi.org/10.1645/GE-3074.1.

FAO. Food Agriculture Organization of the United Nation. Module 1. Ticks: Acaricides resistance: Diagnosis management and prevention in: Guidelines resistance management and integrated parasite control in ruminants. FAO Animal Production and Health Division, Rome. 2004. https://www.fao.org/3/ag014e/ag014e.pdf.

Drummond RO, Ernst SE, Trevino JL, Gladney WJ, Graham OH. Boophilus annulatus and Boophilus microplus: laboratory tests for insecticides. J Econ Entomol 1973;66(1):130-133. https://doi.org/10.1093/jee/66.1.130.

Abbott WS. A method of computing the effectiveness of an insecticides. J Econ Entomol 1925;18(2):265-267. https://doi.org/10.1093/jee/18.2.265a.

Chungsamarnyart N, Jiwajinda S, Jansawan W. Larvicidal effect of plant crude-extracts on the tropical cattle tick (B. microplus). Thailand. Kasetsart J Nat Sci 1991;25(5):80-89.

Rosado-Aguilar JA, Aguilar-Caballero A, Rodríguez-Vivas RI, Borges-Argaez R, García-Vázquez Z, Méndez-González M. Screening of the acaricidal efficacy of phytochemical extracts on the cattle tick Rhipicephalus (Boophilus) microplus (acari: ixodidae) by larval immersion test. Trop Subtrop Agroecosyst 2010;12(2):417-422. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/download/358/362.

Arceo-Medina GN, Rosado-Aguilar JA, Rodríguez-Vivas RI, Borges-Argaez R. Synergistic action of fatty acids, sulfides, and stilbene against acaricide-resistant Rhipicephalus microplus ticks. Vet Parasitol 2016;228:121–125. http://dx.doi.org/10.1016/j.vetpar.2016.08.023.

Sosa-Rueda J, Domínguez-Meléndez V, Ortiz-Celiseo A, López-Fentanes FC, Cuadrado C, Fernández JJ, Hernández Daranas A, Cen-Pacheco F. Squamins C–F, four cyclopeptides from the seeds of Annona globiflora. Phytochemistry 2022;194:112839. https://doi.org/10.1016/j.phytochem.2021.112839.

Rodríguez-Expósito RL, Sosa-Rueda J, Reyes-Batlle M, Sifaoui I, Cen-Pacheco F, Hernández Daranas A, Díaz-Marrero AR, Piñero JE, Fernández JJ, Lorenzo-Morales J. Antiamoeboid activity of squamins C–F, cyclooctapeptides from Annona globifora. Int J Parasitol Drugs Drug Resist 2021;17:67-79.

Bhavani Shankaram AV, Marthanda Murthy M, Manohar Akkewar D, Subramanyam M, Narasimha Rao A. Compound iso-squamocin obtained from seeds of Annona squamosa and composition containing the same. Patent US6991818B2 2006.

Chungsamarnyart N, Jiwajinda S, Jansawan W, Kaewsuwan U, Burnasilpin P. Effective plant crude-extracts on the tick (Boophilus microplus) larvicidal action. Kasetsart J Nat Sci 1988;22:37-41. https://li01.tci-thaijo.org/index.php/anres/article/view/242564/165442.

Emanuele S, Lauricella M, Calvaruso G, D’Anneo A, Giuliano M. Litchi chinensis as a functional food and a source of antitumor compounds: an overview and a description of biochemical pathways. Nutrients 2017;8;9(9):pii-E992. https://doi.org/10.3390/nu9090992.

Isman MB, Koul O, Luczynski A, Kaminskis J. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J Agric Food Chem 1990;38:1406-1411. https://doi.org/10.1021/jf00096a024.

Walton SF, Myerscough MR, Currie BJ. Studies in vitro on the relative efficacy of current acaricides for Sarcoptes scabiei var. hominis. Trans R Soc Trop Med Hyg 2000;94: 9296. https://doi.org/10.1016/S0035-9203(00)90454-1.

Kadela-Tomanek M, Jastrzębska M, Chrobak E, Bębenek E, Boryczka S. Chromatographic and computational screening of lipophilicity and pharmacokinetics of newly synthesized betulin-1,4-quinone hybrids. Processes 2021;9(2):376. https://doi.org/10.3390/pr9020376.

Echeverría J, Opazo J, Mendoza L, Urzúa A, Wilkens, M. Structure-activity and lipophilicity relationships of selected antibacterial natural flavones and flavanones of chilean flora. Molecules 2017;2(4):608. https://doi.org/10.3390/molecules22040608.



Cómo citar

Sosa-Rueda, J., Villarauz, F., Domínguez-Meléndez, V., Soto-Rodríguez, I., López-Fentanes, F. C., Martínez-Herrera, D. I., … Cen-Pacheco, F. (2023). Ixodicide action of natural products from native Mexican plants. Revista Mexicana De Ciencias Pecuarias, 14(2), 292–308. https://doi.org/10.22319/rmcp.v14i2.6245
  • Resumen
  • PDF
  • PDF
  • Full text





Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.