Nutrient concentrations, in vitro digestibility and rumen fermentation of agro-industrial residues of Cannabis sativa L. as a potential forage source for ruminants

Autores/as

DOI:

https://doi.org/10.22319/rmcp.v14i2.6188

Palabras clave:

Hemp, Methane, Degradability, Ruminal fermentation, Gas production kinetics

Resumen

This study aimed to determine the concentration of CP, EE, NSC, fibers, TPC, CT, CBD, THC, in vitro digestibility of dry matter and rumen fermentation parameters of agroindustrial residues of Cannabis sativa L. from two extractive processes of cannabinoids, as a potential source of forage in ruminants feeding. The flower of Cannabis sativa was exposed to cold-press extraction (CPC) and alcoholic extraction (AEC) process; vegetative residues obtained after extractions were compared to raw flower as a control (RFC) using a completely randomized design and Tukey’s test for means comparison. Extractive processes decreased EE, TPC and cannabinoids (CBD and THC). Otherwise, fibers, NSC and digestibility, increased after the extractive processes in CPC and AEC. Similarly, in vitro degradability increased after both extractive processes above 120 % as well as latency period. Additionally, protozoa increased with CPC but no changes were observed in AEC. Likewise, no changes were observed in cellulolytic bacteria in CPC and AEC. However, total bacteria were reduced after both extractions. Moreover, N-ammonia in ruminal fermentations decreased with CPC and AEC whereas total volatile fatty acids increased. In addition, gas production increased above 75 % in CPC and AEC; however, no changes were observed in latency period. Furthermore, methane and CO2 production increased above 80 and 60 %, respectively for CPC and AEC; these augmentations are positively associated with improvements in the ruminal fermentations. In conclusions, the agroindustrial residue of Cannabis sativa L. obtained after the analyzed extractive processes may arise as a potential forage source in ruminants feeding.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Gerardo Antonio Pámanes-Carrasco, Universidad Juárez del Estado de Durango. CONACYT. Instituto de Silvicultura e Industria de la Madera. México.

Catedrático CONACYT 

Instituto de Silvicultura e Industria de la Madera

Universidad Juárez del Estado de Durango

Citas

Jenatová A, Franková A, Tlustos P, Hamouz K, Bozik M, Kloucek P. Yield and cannabinoids contents in different cannabis (Cannabis sativa L.) genotypes for medical use. Ind Crops Prod 2018;(112):363-367.

Suero-García C, Martín-Banderas L, Holgado MA. Efecto neuroprotector de los cannabinoides en las enfermedades neurodegenerativas. Ars Pharm 2015;56(2):77-87.

León CJJ. Editorial: El aceite del cannabis. Rev Soc Quím Perú 2017;83(3):261-263.

Ebskamp MJ. Engineering flax and hemp for an alternative to cotton. Trends Biotechnol 2002;20(6):229-230.

Small E, Marcus D. Hemp: A new crop with new uses for North America. In: Janick J, Whipkey A. editors. Trends in new crops and new uses. ASHS Press, Alexandria, VA. 2002:284–326.

Hernández-Díaz D, Villar-Ribeira R, Julián F, Tarres Q, Espinach FX, Delgado-Aguilar M. Topography of the interfacial shear strength and the mean intrinsic tensile strength of hemp fibers as a reinforcement of polypropylene. Mater 2020;13(1012):1-16.

Bailoni L, Bacchin E, Trocino A, Arango S. Hemp (Cannabis sativa L.) Seed and co-products inclusion in diets for dairy ruminants: A review. Anim 2021;(11)856.

USDJ (National drug threat assessment 2008: Marijuana) United States Department of Justice. https://www.justice.gov/archive/ndic/pubs25/25921/marijuan.htm Accessed march 29, 2022.

Kleinhenz MD, Magnin G, Ensley AM, Griffin JJ, Goeser J, Lynch E, PAS, Coetzee JF. Nutrient concentrations, digestibility, and cannabinoid concentrations of industrial hemp plant components. Appl Anim Sci 2020;36(4):489-494.

AOAC (Association of Official Analytical Chemists). Official Methods of Analysis. 2019.

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74(10): 3583-3597.

ANKOM (Gas production system operator’s manual). ANKOM Technology, USA. 2015.

Menke KH, Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev 1988;28(1):7-55.

Heimler D, Isolani L, Vignolini P, Tombelli S, Romani A. Polyphenol content and antioxidative activity in some species of freshly consumed salads. J Agric Food Chem 2007;(55):1724-1729.

Dewanto V, Wu X, Adom KK, Liu RA. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 2002; (42):3010-301.

Novak J, Zitterl-Eglseer K, Deans SG, Franz CM. Essential oils of different cultivars of Cannabis sativa L. and their antimicrobial activity. Flavour Fragr J 2001;(16):259–262.

Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol 1994;(48):185-197.

Murillo OM, Herrera TE, Corral LA, Pámanes CG. Effect of inclusion of graded level of water hyacinth on in vitro gas production kinetics and chemical composition of alfalfa hay based beef cattle diets. Indian J Animal Res 2018;52(8):1298-1303.

Galyean ML. Laboratory Procedures in Animal Nutrition Research. 13th ed. Lubbock: USA; 2010.

Herrera-Torres E, Murillo-Ortiz M, Méndez J, Araiza-Rosales E, Reyes Jáquez D, Pámanes-Carrasco G. In vitro methane production and in situ degradability of prickly pear pretreated with yeast cultures. Trop Subtrop Agroecosystems 2021;(24):100.

Dehority BA. Rumen microbiology. Nottingham: Nottingham University Press; 2003:372.

Ogimoto K, Imai S. Atlas of Rumen Microbiology. Japan Sci Soc Press. Tokyo 1981:231.

Joblin KN. Isolation, enumeration and maintenance of rumen anaerobic fungi in roll tubes. Appl Environ Microbiol 1981(30):27-37.

Harrigan WF, McCance EM. Métodos de laboratorio en microbiología de los alimentos y productos lácteos. España: Ed. Academia. León, 1979;(32-35):361-366.

SAS. SAS User´s Guide (Release 9.1.3). Cary NY, USA. SAS Inst.Inc. 2003.

Çakaloğlu B, Özyurt VH, Ötles S. Cold press in oil extraction: A review. Ukr J Food 2018;7(4):640-654.

Hessle A, Eriksson M, Nadeau E, Turner T, Johansson B. Cold-pressed hempseed cake as a protein feed for growing cattle. Acta Agric Scand Anim Sci 2008;(58):136–145.

Östbring K, Malmqvist E, Nilsson K, Rosenlind I, Rayner M. The effects of oil extraction methods on recovery yield and emulsifying properties of proteins from rapeseed meal and press cake. Foods 2020;9(19):2-14.

Jarrell WM, Beverly RB. The dilution effect in plant nutrition studies. Adv Agron 1981;(34):197-224.

Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar Sara S, Montoya-Flores MD, Molina-Botero IC, et al. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front Vet Sci 2020;7:1-14.

Kleinhenz MD. Plasma concentrations of eleven cannabinods in cattle following oral administration of industrial hemp. Appl Anim Sci 2020;36(4):489-494.

Cornette HE. Pharmacokinetics of single feeding of cannabidiol in cattle: A pilot study. Honors College Thesis, Murray State University Honors College, 2022.

Semwogerere F, Chenaimoyo LF, Katiyatiya1 OC, Chikwanhal MC, Cletos M. Bioavailability and bioefficacy of hemp by-Products in ruminant meat production and preservation: A Review. Front Vet Sci 2020;(7).

Ali EMM, Almagboul AZI, Khogali SME, Gergeir UMA. Antimicrobial activity of Cannabis sativa L. J Chinese Med 2012;3(6):1–4.

Belanche A, de la Fuente G, Pinloche E, Newbold CJ, Balcells J. Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis. J Anim Sci 2012;(90):3924–3936.

Wang S, Kreuzer M, Braun U, Schwarm A. Effect of unconventional oilseeds (safflower, poppy, hemp, camelina) on in vitro ruminal methane production and fermentation. J Sci Food Agric 2017;(97):3864–3870.

Getahun D, Alemneh T, Akeberegn D, Getabalew M, Sewdie D. Urea metabolism and recycling in ruminants. Biomed J Sci Tech Res 2019;20(1):14790–14796.

Karnati SKR, Sylvester JT, Ribiero DM, Gilligan LE, Firkins JL. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis. J Dairy Sci 2009;(92):3849-3860.

Guyader J, Eugéne M, Noziére P, Morgavi DP, Doreau M, Martin C. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach. Animal 2014;8(11):1816-1825.

Embaby MG, Günal M, Abughazaleh A. Effect of unconventional oils on in vitro rumen methane production and fermentation. Cienc Investig Agrar 2019(46):276–285.

Patra A, Park T, Kim M, Yu Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol 2017;(8):13.

Publicado

03.04.2023

Cómo citar

Araiza-Rosales, E. E., Herrera-Torres, E., Carrete-Carreón, F. Óscar, Jiménez-Ocampo, R., Gómez-Sánchez, D., & Pámanes-Carrasco, G. A. (2023). Nutrient concentrations, in vitro digestibility and rumen fermentation of agro-industrial residues of Cannabis sativa L. as a potential forage source for ruminants. Revista Mexicana De Ciencias Pecuarias, 14(2), 366–383. https://doi.org/10.22319/rmcp.v14i2.6188
Metrics
Vistas/Descargas
  • Resumen
    764
  • PDF
    290
  • PDF
    307
  • Full text
    359

Número

Sección

Artículos

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.