Lenteja de agua (Lemna minor): potencial alimentario y ambiental. Revisión
DOI:
https://doi.org/10.22319/rmcp.v15i2.6107Palabras clave:
Lenteja de agua, Lemna minor, Perfil Nutricional, Remediación Ambiental, Alimentación humana y animalResumen
Las lentejas de agua son plantas con flores de la familia Aráceas, comprenden las angiospermas más pequeñas del reino vegetal, una especie de algas acuáticas de distribución universal, se encuentran en la superficie de los cuerpos de agua dulce principalmente en charcos, ciénagas, lagos y ríos calmados. Recientemente, se han llevado a cabo diferentes investigaciones sobre su potencial y utilidad. Por su composición nutricional, aporte de proteína, alto contenido de fibra y bajo contenido de grasas y carbohidratos, resultaría ser un insumo adecuado para generar productos de alto valor nutricional, características que la hacen interesante frente a otras especies. Se emplea como complemento a dietas comerciales en una gran variedad animales como aves, rumiantes, no rumiantes, crustáceos y peces, reduciendo hasta un 50 % los costos por alimentación. Así mismo, usada en procesos de remediación de una amplia gama de contaminantes químicos con alta tasa de eliminación, pueden absorber algunas sustancias disueltas y brindar oxígeno mediante la fotosíntesis. Se ha indicado bajo costo de construcción, mantenimiento, fáciles de operar, poseen amplia tolerancia a condiciones de crecimiento, facilidad general de cosecha y no compiten con las tierras de cultivo. En el ámbito ambiental es importante encontrar materias primas alternativas e innovadoras, incluso sin la necesidad de utilizar medios de crecimiento o fertilizantes, sin embargo, su aceptación como fuente de alimento necesita investigaciones exhaustivas con respecto a su valor nutritivo, rendimiento a gran escala, suministro de mercado económico y análisis de componentes antinutritivos para la alimentación humana.
Descargas
Citas
Rock B, Sriyan J, Vijay B, Thalha N, Elango S, Rajajeyakumar M. Organic food and health: a systematic review. J Community Med Health Educ 2017;7(3):1-7.
Arroyave M. La lenteja de agua (Lemna minor L.): una planta acuática promisoria. Rev EIA 2004;1:33-38.
Dong X, Lv L, Zhao W, Yu Y, Liu Q. Optimization of integrated multi-trophic aquaculture systems for the giant freshwater prawn Macrobrachium rosenbergii. Aquacult Environ Interact 2018;10:547-556.
Bergmann B, Cheng J, Classen J, Stomp A. In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresource Technol 2000;73(1):13-20.
Baek G, Saeed M, Choi HK. Duckweeds: their utilization, metabolites, and cultivation. Appl Biol Chem 2021;64:73.
Appenroth KJ, Sree KS, Böhm V, Hammann S, Vetter W, Leiterer M, Jahreis G. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem 2017;217:266–273.
Edelman M, Appenroth KJ, Sree KS. Duckweed: Biological chemistry and applications. Front Sustain Food Syst 2022;(4):615135.
Tavares F, Rodrigues, Machado D, Esquivel J, Roubach R. Dried duckweed and commercial feed promote adequate growth performance of tilapia fingerlins. Biotemas 2008;21(3):91-97.
Ponce J, Febrero I, González R, Romero O, Estrada O. Perspectivas de la Lemna sp. para la alimentación de peces. Rev Electrónica Vet 2005;6(3):1-6.
Raven P, Evert R, Eichhorn S. Biology of plants New York: Worth. Ann Botany 2013;113(7).
Landolt E. Biosystematic investigations in the family of duckweeds (Lemnaceae). In G. Veröff, The family of Lemnaceae – A monographic study. Part 1 of the monograph: Morphology; karyology; ecology; geographic distribution; systematic position; nomenclature; descriptions. Zúrich: Inst. Stiftung Rübel. 1986.
Andrade IA, Baque MA. Composición química y actividad antioxidante de la lenteja de agua (Lemna minor L.) [tesis doctoral]. Guayaquil, Ecuador: Universidad de Guayaquil; 2020.
Fang YY, Babourina O, Rengel Z, Yang XE, Pu PM. Ammonium and nitrate uptakeby the floating plant Landoltia punctata. Annals Botanical 2007;99(2):365-370.
Fiordelmondo E, Ceschin S, Magi G, Mariotti F, Iaffaldano N, Galosi L, Roncarati A. Effects of partial substitution of conventional protein sources with duckweed (Lemna minor) meal in the feeding of rainbow trout (Oncorhynchus mykiss) on growth performances and the quality product. Plants 2022;11(9):1220.
Ceschin S, Crescenzi M, Iannelli MA. Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters. Environ Sci Pollut Res 2020;27:15806–15814.
Appenroth KJ, Sree KS, Bog M, Ecker J, Seeliger C, Böhm V, et al. Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Frontiers Chem 2018;6:1-13.
Turck D, Bohn T, Castenmiller J, De-Henauw S, Hirsch-Ernst KI, Maciuk A, et al. Safety of Lemna minor and Lemna gibba as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2022.
Dewanji A. Amino acid composition of leaf proteins extracted from some aquatic weeds. J Agric Food Chem 1993;41:1232-1236.
Palacios JM, Villalobos SC. Factibilidad económica para la creación de una planta productora de harina de lenteja de agua Lemna minor L., como complemento proteico en la alimentación de la especie tilapia roja Oreochromis spp. [tesis pregrado]. Villavicencio, Colombia: Universidad Santo Tomás; 2019.
Jahreis G, Brese M, Leiterer M, Schäefer U, Böhm V. Legume flours: Nutritionally important sources of protein and dietary fiber. Ernaehrungs Umschau Int 2016;63(02);36-42.
Edelman M, Colt M. Nutrient value of leaf vs seed. Frontiers Chem 2016;4:32.
Chew E, Clemons T, SanGiovanni J, Danis R, Ferris F, Elman M. Lutein Zeaxanthin and Omega-3 fatty acids for age-related macular. Food Chem 2013;309(19):25-30.
Yan Y, Candreva J, Shi H, Ernst E, Martienssen R, Schwender J. Survey of the total fatty acid and triacylglycerol composition and content of 30 duckweed species and cloning of a D6-desaturase responsible for the production of c-linolenic and stearidonic acids in Lemna gibba. BMC Plant Biology 2013;13(1):1-14.
Tang J, Li Y, Ma J, Cheng JJ. Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains. Plant Biol 2015;17(5):1066-1072.
Cui W, Cheng JJ. Growing duckweed for biofuel production: A review. Plant Biol 2015;17:16-23.
Ziegler P, Adelmann K, Zimmer S, Schmidt C, Appenroth KJ. Relative in vitro growth rates of duckweeds (Lemnaceae) – The most rapidly growing higher plants. Plant Biol 2015;17:33-41.
Zhao Z, Shi HJ, Wang ML, Cui L, Zhao H, Zhao Y. Effect of nitrogen and phosphorus deficiency on transcriptional regulation of genes encoding key enzymes of starch metabolism in duckweed (Landoltia punctata). Plant Physiol Biochem 2015;86:72-81.
Sree KS, Maheshwari SC, Boka K, Khurana JP, Keresztes A, Appenroth KJ. The duckweed Wolffia microscopica: A unique aquatic monocot. Flora 2015;210:31-39.
Arnold C, Schwarzenbolz U, Böhm V. Carotenoids and chlorophylls in processed xanthophyll-rich food. LWT-Food Sci Technol 2014;57(1):442-445.
Zelicha H, Kaplan A, Yaskolka-Meir A, Tsaban G, Rinott E, Shelef I, et al. The effect of Wolffia globosa mankai, a green aquatic plant, on postprandial glycemic response: a randomized crossover controlled trial. Diabetes Care 2019;42(7):1162-1169.
Lonnie M, Laurie I, Myers M, Horgan G, Russell W, Johnstone AM. Exploring health-promoting attributes of plant proteins as a functional ingredient for the food sector: a systematic review of human interventional studies. Nutrients 2020;12(8):2291.
Yaskolka-Meir A, Tsaban G, Zelicha H, Rinott E, Kaplan A, Youngster I, et al. A green-mediterranean diet, supplemented with mankai duckweed, preserves iron-homeostasis in humans and is efficient in reversal of anemia in rats. J Nutrition 2019;149(6):1004-1011.
Goswami RK, Sharma J, Shrivastav AK, Kumar G, Glencross B, Tocher D, Chakrabarti R. Effect of Lemna minor supplemented diets on growth, digestive physiology, and expression of fatty acids biosynthesis genes of Cyprinus carpio. Sci Rep 2022;12(1):3711.
Bui X, Ogle B, Lindberg JE. Use of duckweed as a protein supplement for breeding ducks. Asian Australasian J Anim Sci 2002;15(6):866-871.
Leng RA, Stambolie JH, Bell R. Duckweed a potential high protein feed resource for domestic animals and fish. Res Rural Develop 1995;7(1):36.
Mbagqu I, Adeniji H. El contenido alimenticio de la lenteja de agua en el área de Kainji, Nigeria. IFFR 1998.
Noor J, Hossain MA, Bari MM, Azimuddin KM. Effects of duckweed (Lemna minor) as dietary fishmeal substitute for silver barb (Bar bodes gonionotus Bleeker) Bangladesh. J Fish 2000;4(1):35-42.
Gutiérrez G. Potencial de la planta Lemna gibba en la alimentación de cerdos [tesis de maestría]. Tecomán, México: Universidad Interinstitucional de Colima; 2000.
Sánchez O. Obtención de harina a partir de ensilaje biológico de subproductos de Trucha arcoíris (Oncorhynchus mykiss) y Tilapia roja (Oreochromis spp) [tesis pregrado]. Valle del Cauca, Colombia: Universidad del Cauca; 2016.
Yilmaz E, Akyurt I, Günal G. Use of duckweed, Lemna minor, as a protein feedstuff in practical diets for common carp, Cyprinus carpio, fry. Turkish J Fisheries Aquatic Sci 2004;4(2)105-109.
Goswami RK, Shrivastav AK, Sharma JG, Tocher, DR, Chakrabarti R. Growth and digestive enzyme activities of rohu Labeo rohita fed diets containing macrophytes and almond oil-cake. Anim Feed Sci Technol 2020;263:114456.
Xue Y, Peijnenburg WJ, Huang J, Wang D, Jin Y. Trophic transfer of Cd from duckweed (Lemna minor L.) to tilapia (Oreochromis mossambicus). Environ Toxicol Chem 2018;37(5):1367-1377.
Mahoney R, Weeks R, Huang Q, Dai W, Cao Y, Liu G, et al. Fermented duckweed as a potential feed additive with poultry beneficial bacilli probiotics. Probiotics Antimicrobial Proteins 2021;13(5):1425-1432.
Gür N, Türker OC, Böcük H. Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution. Chemosphere 2016;157:1-9.
Sobrino AS, Miranda MG, Alvarez C, Quiroz A. Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L (duckweed). J Environ Sci Healt, Part A 2010;45:107-110.
Radić S, Stipaničev D, Cvjetko P, Rajčić, MM, Širac S, Pevalek-Kozlina B, Pavlica M. Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicol Environ Safety 2011;74(2):182-187.
Ziegler P, Adelmann K, Zimmer S, Schmidt, C, Appenroth KJ. Relative in vitro growth rates of duckweeds (Lemnaceae) – The most rapidly growing higher plants. Plant Biol 2015;17(s1):33-41.
Cedergreen N, Madsen TV. Nitrogen uptake by floating macrophyte Lemna minor. New Phytologist 2002;155(2):285-292.
Ali S, Abbas Z, Rizwan M, Zaheer IE, Yavaş İ, Ünay A, Kalderis D. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Sustainability 2020;12(5):1927.
Ekperusi AO, Sikoki FD, Nwachukwu EO. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere 2019;223:285-309.
Mohedano RA, Costa RHR, Tavares FA, Filho PB. High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour Technol 2012;112:98-104.
Adesiyan IM, Bisi-Johnson M, Aladesanmi OT, Okoh AI, Ogunfowokan AO. Concentrations and human health risk of heavy metals in rivers in Southwest Nigeria. J Health Pollution 2018;8(19):180907.
Chinedu E, Chukwuemeka, CK. Oil spillage and heavy metals toxicity risk in the Niger delta, Nigeria. J Health Pollution 2018;8(19):180905.
Sodango TH, Li X, Sha J, Bao Z. Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: impacts and mitigation approaches. J Health Pollution 2018;8(17):53-70.
Tufaner F. Post-treatment of effluents from UASB reactor treating industrial wastewater sediment by constructed wetland. Environ Technol 2018;41(7):912-920.
Böcük H, Yakar A, Türker OC. Assessment of Lemna gibba L. (duckweed) as a potential ecological indicator for contaminated aquatic ecosystem by boron mine effluent. Ecological Indicators 2013;29:538–548.
Sallah‐Ud‐Din R, Farid M, Saeed R; Ali S, Rizwan M, Tauqeer HM, Bukhari SAH. Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress. Environmental Sci Pollution Res 2017;24:17669–17678.
Wilson PC, Koch R. Influence of exposure concentration and duration on effects and recovery of Lemna minor exposed to the herbicide norflurazon. Archives Environ Contam Toxicol 2013;64:228-234.
Dalton RL, Nussbaumer C, Pick FR, Boutin C. Comparing the sensitivity of geographically distinct Lemna minor populations to atrazine. Ecotoxicology 2013;22:718-730.
Wang F, Yi X, Ku H, Chen L, Liu D, Wang P, Zhou Z. Enantioselective accumulation, metabolism and phytoremediation of lactofen by aquatic macrophyte Lemna minor. Ecotoxicol Environ Safety 2017;143:186-192.
Ekperusi AO, Sikoki FD, Nwachukwu EO. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemospere 2019;223:285-309.
Lo BP, Elphick JR, Bailey HC, Baker JA, Kennedy CJ. The effect of sulfate on selenite bioaccumulation in two freshwater primary producers: A duckweed (Lemna minor) and a green alga (Pseudokirchneriella subcapitata). Environ Toxicol Chem 2015;34(12):2842-2845.
Kritchevsky D, Chen SC. Phytosterols—Health benefits and potential concerns: A review. Nutrition Res 2005;25(5):413-428.
Naumann B, Eberius M, Appenroth, KJ. Growth rate based dose- response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J Plant Physiol 2007;164(12):1656-1664.
Sree KS, Bog M, Appenroth KJ. Taxonomy of duckweeds (Lemnaceae), potential new crop plants. Emirate J Food Agricult 2016;28(5):291-302.
Sree KS, Dahse HM, Chandran JN, Schneider B, Jahreis G, Appenroth KJ. Duckweed for human nutrition: no cytotoxic and no anti-proliferative effects on human cell lines. Plant Foods Human Nutr 2019;74:223-224.
Descargas
Publicado
Cómo citar
-
Resumen3974
-
PDF360
-
PDF 835
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores/as que publiquen en la Revista Mexicana de Ciencias Pecuarias aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Pecuarias reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.