Forage availability in Xaraés grass pastures subjected to nitrogen sources of the slow and fast release
DOI:
https://doi.org/10.22319/rmcp.v13i3.6022Palabras clave:
Brachiaria brizantha, Nutrient use efficiency, Pastures, Ammonia volatilizationResumen
The N-(n-butyl) thiophosphoric triamide (NBPT), a urease inhibitor, has been reported as one of the most promising compounds to reduce losses by volatilization, and to maximize the use of urea nitrogen (N) in agricultural systems. A field study was carried out to examine urease inhibitors' potential about volumetric density and forage mass grass (Brachiaria brizantha cv. Xaraés) to N application. The experiment was carried out from September 2017 to September 2018. The experimental design used was complete randomized blocks in the 3×2×4 factorial array, considering: three periods of the year (wet season, dry season, and the transition), two sources of urea (conventional urea and NBPT–treated urea), and four N rates (0, 80, 160 and 240 kg N ha-1 yr-1), replicated three times. Nitrogen sources promoted a positive effect (P<0.0001) on bulk density, forage mass, and in the grazing stratum during the wet season and the transition season, with increasing N rates in pastures. The leaf: stem ratio decreased linearly (P<0.0045) as increased N rates, and the higher ratio during the wet season and lower in the dry season of the year. For the rates of 80 kg N ha-1 yr-1, there was a significant difference (P=0.0042) between sources, with greater (P=0.0006) forage mass of 0–30 cm, post-grazing forage mass (P=0.0042) and forage volumetric density (P=0.0006), when utilized the conventional urea. The application of N, regardless of the source, provides an increase in forage mass and volumetric density in Xaraés grass pastures up to a dose of 240 kg N ha-1 yr-1, in the transition season and wet season.
Descargas
Citas
Van Soest PJ. Nutritional ecology of the ruminant. 2. ed. Ithaca: Cornell Universtity 1994.
Gao WL, Yang H, Kou L, Li SG. Efeitos da deposição de nitrogênio e adubação nas transformações de N em solos florestais: uma revisão. J Solos e Sed 2015;15(4):863-879.
Cameron KC, Di HJ, Moir JL. Perdas de nitrogênio do sistema solo/planta: uma revisão. Ann Appl Bio 2013;162 (2):145-173.
Primavesi AC, Primavesi O, Corrêa LA, Silva AG, Cantarella H. Nitrate leaching in heavily nitrogen fertilized coastcross pasture. R Bras Zootec 2006;35:683-690.
Bortoletto-Santos R, Guimarães GGF, Roncato Junior V, Cruz DF, Polito WL, Ribeiro C. Biodegradable oil-based polymeric coatings on urea fertilizer: N release kinetic transformations of urea in soil. Sci Agric 2020;77(e20180033). https://doi.org/10.1590/1678-992x-2018-0033.
Cantarella H, Otto R, Soares JR, Silva AGB. Agronomic efficiency of NBPT as a urease inhibitor: A review. J Adv Res 2018;13:19-27. https://doi.org/10.1016/j.jare.2018.05.008.
Guimarães GG, Mulvaney RL, Cantarutti RB, Teixeira BC, Vergütz L. Value of copper, zinc, and oxidized charcoal for increasing forage efficiency of urea N uptake. Agric Ecosyst Environ 2016; 224:157-165.
Ibrahim KRM, Babadi FE, Yunus R. Comparative performance of different urea coating materials for slow release. Particuology 2014;17:165-172. https://doi.org/10.1016/j.partic.2014.03.009.
Ni B, Liu M, Lü S. Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chem Eng J 2009;155(3):892-898. https://doi.org/10.1016/j.cej.2009.08.025.
Lasisi AA, Akinremi OO, Zhang Q, Kumaragamage D. Efficiency of fall versus spring applied urea‐based fertilizers treated with urease and nitrification inhibitors I. Ammonia volatilization and mitigation by NBPT. Soil Sci Soc Am J 2020. https://doi.org/10.1002/saj2.20062.
Silva AGB, Sequeira CH, Sermarini RA, Otto R. Urease inhibitor NBPT on ammonia volatilization and crop productivity: a meta-analysis. Agron J 2017;109(1):1. https://doi.org/10.2134/agronj2016.04.0200.
Singh J, Kunhikrishnan A, Bolan NS, Saggar S. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Sci Total Environ 2013;65:56–63.
Halvorson AD, Snyder CS, Blaylock AD, Del Grosso SJ. Enhanced-efficiency nitrogen fertilizers: Potential role in nitrous oxide emission mitigation. Agron J 2014;106(2): 715–722. https://doi.org/10.2134/agronj2013.0081.
Trenkel ME. Slow-and controlled-release and stabilized fertilizers: An option for enhancing nutrient use efficiency in agriculture. International Fertilizer Industry Association (IFA), Paris. 2010.
Watson CJ, Laughlin RJ, McGeough KL. Modification of nitrogen fertilizers using inhibitors: Opportunities and potentials for improving nitrogen use efficiency. Int Fert Soc Proc. Colchester, UK. 2009; 658.
Gioacchini P, Nastri A, Marzadori C, Giovannini C, Antisari LV, Gessa C. Influence of urease and nitrification inhibitors on N losses from soils fertilized with urea. Biol Fertil Soils 2002;36:129–135. https://doi.org/10.1007/s00374-002-0521-1.
Carmona G, Christianson CB, Byrnes BH. Temperature and low concentration effects of the urease inhibitor N-(n-butyl) thiophosphoric triamide (n-BTPT) on ammonia volatilization from urea. Soil Biol Biochem 1990;22(7):933–937. https://doi.org/10.1016/0038-0717(90)90132-J.
Chagas PHM, Gouveia GCC, Costa GGS, Barbosa WFS, Alves AC. Volatilização de amônia em pastagem adubada com fontes nitrogenadas. J Neotrop Agric 2017;4(2):76-80.
Soares JR, Cantarella H, Menegale MLC. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biology Biochem 2012;52:82–89. https://doi.org/10.1016/j.soilbio.2012.04.019
Cantarella H, Trivelin PCO, Contin TLM, Dias FLF, Rossetto R, Marcelino R, Coimbra RB, Quaggio JA. Ammonia volatilization from urease inhibitor-treated urea applied to sugarcane trash blankets. Sci Agric 2008;65(4):397-401.
Watson CJ, Miller H, Poland P, Kilpatrick DJ, Allen MDB, Garrett MK, Christianson C. Soil properties and the ability of the urease inhibitor N- (n-butyl) thiophosphoric triamide (n BTPT) to reduce ammonia volatilization from surface-applied urea. Soil Biol Biochem 1994;26(9):1165–1171. https://doi.org/10.1016/0038-0717(94)90139-2.
Silveira ML, Vendramini JMB, Sellers B, Monteiro FA, Artur AG, Dupas E. Bahiagrass response and N loss from selected N fertilized sources. Grass Forage Sci 2015;70(1):154-160.
Zavaschi E, Faria LDA, Vitti GC, Nascimento CADC, Moura TAD, Vale DWD, et al. Ammonia volatilization and yield components after application of polymer-coated urea to maize. R Bras Ciênc Solo 2014;38(4):1200-1206. https://doi.org/10.1590/S0100-06832014000400016.
Espindula MC, Rocha VS, Souza MA, Capanharo M, Paula GS. Rates of urea with or without urease inhibitor for topdressing wheat. Chil J Agric Res 2013;73(2):160–167. https://doi.org/10.4067/S0718-58392013000200012.
Massey CG, Norman RJ, Jr EEG, DeLong RE, Golden BR. Bermuda grass forage yield and ammonia volatilization as affected by nitrogen fertilization. Soil fertility and plant nutrition. Soil Sci Soc Am J 2011;75:638–648.
Pan B, Lam SK, Mosier A, Luo Y, Chen D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agric Ecosyst Environ 2016; 232:283-289. https://doi.org/10.1016/j.agee.2016.08.019.
Turner DA, Edis RB, Chen D, Freney JR, Denmead OT, Christie R. Determination and mitigation of ammonia loss from urea applied to winter wheat with N- (n-butyl) thiophosphorictriamide. Agric Ecosyst Environ 2010;37(3–4):261-266.
Schraml M, Gutser R, Maier H, Schmidhalter U. Ammonia loss from urea in grassland and its mitigation by the new urease inhibitor 2-NPT. J Agric Sci 2016;154(8):1453-1462. https://doi.org/10.1017/S0021859616000022.
Thornthwaite CW, Mather RJ. The water balance. New Gersey: Laboratory of climatology 1955;104.
Pequeno DNL. Intensidade como condicionante da estrutura do dossel e da assimilação de carbono de pastos de capim Xaraés [Brachiaria brizantha (A. Rich) Stapf. cv. Xaraés sob lotação continua .75f. Escola Superior de Agricultura “Luiz de Queiroz” – Esalq, 2010.
Mislevy P, Mott GO, Martin FG. Screening perennial forages by mob grazing technique. In: Smith JA, Hays VW, eds. Proc. Int. Grassl. Congr. 14th, Lexington, KY. 15–24 June 1981. Boulder, CO: Westview Press; 1983:516-519.
Marten GC, Shenk JS and Barton II FE. Near-infrared reflectance spectroscopy (NIRS), analysis of forage quality. Washington: USDA, ARS (Agriculture Handbook, 643), 1985.
Stobbs, THA. The effect of plant structure on the intake of tropical pasture. I. Variation in the bite size of grazing cattle. Aust J Agric Res 1973;24(6):809-819.
Grant SA, Marriot CA. Detailed studies of grazed sward-techniques and conclusions. J Agric Sci 1994;122(1):1-6.
Galindo FS, Buzetti S, Teixeira Filho MCM, Dupas E, Ludkiewicz MGZ. Application of different nitrogen doses to increase nitrogen efficiency in Mombasa guinegrass (Panicum maximum cv. Mombasa) at dry and rainy seasons. Aust J Crop Sci 2017;11 (12):1657-1664.
Pereira LET, Paiva AJ, Guarda VD, Pereira PM, Caminha FO, Silva SC. Eficiência de aproveitamento da forragem do capim-marandu em estoque contínuo submetido à fertilização com nitrogênio. Sci Agric 2015;72(2):114-123. https://doi.org/10.1590/0103-9016-2014-0013.
Martuscello J, Rios J, Ferreira M, Assis J, Braz T, Cunha D. Produção e morfogênese de capim BRS Tamani sob diferentes doses de nitrogênio e intensidades de desfolhação. Boletim de Indústria Animal 2019;76:1-10. https://doi.org/10.17523/bia.2019.v76.e144.1
Minson DJ . Forage in ruminant nutrition. San Diego: Academic Press, 1990.
Pedreira BC, Pedreira CGS, Silva SC. Herbage accumulation during regrowth of Xaraés palisadegrass submitted to rotational stocking strategies. R Bras Zootec 2009;38 (4):618-625.
Sousa BMDL, Nascimento Júnior DD, Rodrigues CS, Monteiro HCDF, Silva SCD, Fonseca DMD, Sbrissia AF. Características morfogênicas e estruturais do capim-xaraés submetido a alturas de corte. R Bras Zootec 2011;40(1):53-59.
Hodgson J. Grazing management. Science into practice. Longman Group UK, 1990.
Carvalho PDF, Ribeiro Filho HMN, Poli CHEC, Moraes AD, Delegarde R. Importância da estrutura da pastagem na ingestão e seleção de dietas pelo animal em pastejo. Reunião Anual da Sociedade Brasileira de Zootecnia 2001;38:871.
Stobbs THA. The effect of plant structure on the intake of tropical pasture. I. Variation in the bite size of grazing cattle. Aust J Agric Res 1973;24(6):809-819.
Palhano AL, Carvalho PCDF, Dittrich JR, Moraes AD, Barreto MZ, Santos MCFD. Estrutura da pastagem e padrões de desfolhação em capim-mombaça em diferentes alturas do dossel forrageiro. R Bras Zoote 2005;34(6):1860-1870.
Brâncio PA, Euclides VPB, Nascimento Júnior DD, Fonseca DMD, Almeida RGD, Macedo MCM, Barbosa RA. Avaliação de três cultivares de Panicum maximum Jacq. sob pastejo: disponibilidade de forragem, altura do resíduo pós-pastejo e participação de folhas, colmos e material morto. R Bras Zootec 2003;32(1):55-63.
Santos MER, Souza BDL, Rocha GDO, Freitas CAS, Silveira MCT, Sousa DOC. Estrutura do dossel e características de perfilhos em pastos de capim-piatã manejados com doses de nitrogênio e períodos de diferimento variáveis. Cienc Anim Bras 2017; 18:1-13.
Gastal F, Nelson CJ. Nitrogen use within the growing leaf blade of tall fescue. Plant Physiology 1994;105(1):191-197.
Cruz, P, Boval, M. Effect of nitrogen on some morphogenetic traits of temperate and tropical perennial forage grasses. In: Lemaire G, Hodgson J, Moraes A, editors. Grassland ecophysiology and grazing ecology. Centre for Agriculture and Biosciences International; London, UK. 2000:151-168.
Sbrissia AF, Silva SC. O ecossistema de pastagens e a produção animal. Anais da Reunião Anual da Sociedade Brasileira de Zootecnia. Sociedade Brasileira de Zootecnia: Brasília, DF, Brazil. 2001.
Mesquita P, Silva SC, Paiva AJ, Caminha FO, Pereira LET, Guarda VD, Nascimento Júnior D. Structural characteristics of marandu palisadegrass swards subjected to continuous stocking and contrasting rhythms of growth. Sci Agric 2010;67(1):23-30. https://doi.org/10.1590/S0103-90162010000100004.
Tasca FA, Ernani PR, Rogeri DA, Gatiboni LC, Cassol PC. Volatilização de amônia do solo após a aplicação de ureia convencional ou com inibidor de uréase. Rev Bras Ciência do Solo 2011;35(2):493-502. https://doi.org/10.1590/S0100-06832011000200018.
Mira AB, Cantarella H, Souza-Netto GJM, Moreira LA, Kamogawa MY, Otto R. Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues. Agric, Ecosyst Environmen 2017;248:105–112. https://doi.org/10.1016/j.agee.2017.07.032.
Bouwmeester RJB, Vlek PLG, Stumpe JM. Effect of environmental factors on ammonia volatilization from a urea-fertilized soil. Soil Sci Soc Am J 1985;49(2):376. https://doi.org/10.2136/sssaj1985.03615995004900020021x.
Engel R, Williams E, Wallander R, Hilmer J. Apparent persistence of N- (n-butyl) thiophosphoric triamide is greater in alkaline soils. Soil Sci Soc Am J 2013;77(4): 1424. https://doi.org/10.2136/sssaj2012.0380.
Suter HC, Pengthamkeerati P, Walker C, Chen D. Influence of temperature and soil type on inhibition of urea hydrolysis by N- (n-butyl) thiophosphoric triamide in wheat and pasture soils in south-eastern Australia. Soil Res 2011;49(4):315. https://doi.org/10.1071/sr10243.
Descargas
Publicado
Cómo citar
-
Resumen662
-
PDF 262
-
PDF190
-
Full text 383
Número
Sección
Licencia
Los autores/as que publiquen en la Revista Mexicana de Ciencias Pecuarias aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Pecuarias reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.