Antimicrobial residues found in poultry commercialized in retail stores from the Metropolitan Area of Guadalajara, Jalisco

Autores/as

  • Delia Guillermina González-Aguilar Universidad de Guadalajara. Departamento de Salud Pública. Camino Ramón Padilla Sánchez No. 2100 Nextipac, 45200, Zapopan, Jalisco. México.
  • Maritza Alejandra Ramírez-López Universidad de Guadalajara. Departamento de Salud Pública. Camino Ramón Padilla Sánchez No. 2100 Nextipac, 45200, Zapopan, Jalisco. México.
  • Iyari Ximena Uribe-Camberos Universidad de Guadalajara. Departamento de Salud Pública. Camino Ramón Padilla Sánchez No. 2100 Nextipac, 45200, Zapopan, Jalisco. México.
  • Jeannette Barba-León Universidad de Guadalajara. Departamento de Salud Pública. Camino Ramón Padilla Sánchez No. 2100 Nextipac, 45200, Zapopan, Jalisco. México.

DOI:

https://doi.org/10.22319/rmcp.v13i1.5943

Palabras clave:

Antibiotic residues, Poultry meat, Jalisco, Retail sale

Resumen

The increased demand to produce large quantities of meat and animal products for human consumption has promoted the indiscriminate use of antimicrobials. The increased use of these substances in the production of poultry, has negative consequences on Public Health due to the fact that the accumulation of antimicrobial residues in the organs and tissues of poultry might reach the consumer. The presence of antimicrobial residues can cause problems of hypersensitivity in humans, or the emergence of antimicrobial resistant pathogens. The purpose of this work was to assess the presence of antimicrobial residues in kidney and muscle tissue of poultry, commercialized in four municipalities of the Metropolitan Area of Guadalajara, Jalisco. The results show that kidney samples had a higher number of positive results compared to muscle tissue. Inhibitors of the folate pathway (sulfamethazine) were the antimicrobials with the highest number of positive results in kidney samples. In contrast, in muscle tissue, β-Lactam (penicillin) were the antimicrobials with the highest number of positive samples. Regarding the analysis of the results by municipalities, it was observed that one of them showed a greater number of positive samples for all the classes of antimicrobials evaluated. This work shows the presence of antimicrobial residues in kidney and muscle tissues of poultry, commercialized in retail sites. Therefore, it is necessary to increase efforts to monitor and control the use of antimicrobial in poultry farms.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

CEDRSSA. Centro de Estudios para el Desarrollo Rural Sustentable y la Soberanía Alimentaria. La importancia de la industria avícola en México. 2019. http://www.cedrssa.gob.mx/files/b/13/47Industria_Avicola_M%C3%A9xico.pdf. Consultado Mayo 19, 2021.

Hedman HD, Vasco KA, Zhang L. A review of antimicrobial resistance in poultry farming within low-resource settings. Animals 2020;10(8).

De Briyne N, Atkinson J, Pokludova L, Borriello SP. Antibiotics used most commonly to treat animals in Europe. Vet Rec 2014;175(13).

Muaz K, Riaz M, Akhtar S, Park S, Ismail A. Antibiotic residues in chicken meat: global prevalence, threats, and decontamination strategies: A review. J Food Prot 2018;81(4):619-627.

Vishnuraj M, Kandeepan G, Rao K, Chand S, Kumbhar V. Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: A comprehensive review. Cogent Food & Agriculture 2016;2(1235458):1-8.

Golden CE, Mishra A. Prevalence of Salmonella and Campylobacter spp. in alternative and conventionally produced chicken in the United States: A systematic review and Meta-Analysis. J Food Prot 2020;83(7):1181-1197.

CDC. Centers for Disease Control and Prevention. CDC. Antibiotic resistance threats in the United States, 2019. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf. Accessed May 19, 2021.

Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 2015;112(18):5649-5654.

Ezenduka EV. Screening of antimicrobial residues in poultry meat in Enugu metropolis, Enugu State, South East Nigeria. Vet Ital 2019;55(2):143-148.

Wu Q, Zhu Q, Shabbir MA, Sattar A, Peng DP, Tao YF, et al. The search for a microbiological inhibition method for the rapid, broad-spectrum and high-throughput screening of six kinds of antibiotic residues in swine urine. Food Chem 2021;339.

Pikkemaat MG, Rapallini M, Zuidema T, Elferink JWA, Oostra-van Dijk S, Driessen-van Lankveld WDM. Screening methods for the detection of antibiotic residues in slaughter animals: comparison of the European Union Four-Plate Test, the Nouws Antibiotic Test and the Premi (R) Test (applied to muscle and kidney). Food Additives & Contaminants 2011;28(1):26-34.

Hakem A, Titouche Y, Houali K, Yabrir B, Malki O, Chenouf N, et al. Screening of antibiotics residues in poultry meat by microbiological methods. University of Agricultural Sciences and Veterinary Medicine 2013;70(1).

Karmi M. Detection and presumptive identification of antibiotic residues in poultry meat by using FPT. Global J Pharmacol 2014;8(2):160-165.

SENASICA. Servicio Nacional de Sanidad IyCA. Tabla de Límites Máximos de Residuos, 2020. https://www.gob.mx/senasica/documentos/limites-maximos-de-residuos-toxicos-y-contaminantes?state=published. Consultado Mayo 19, 2021.

Bogaerts RWF. A standardized method for the detection of residues of antibacterial substances in fresh meat. Fleischwirtschaft 1980;60:672-674.

Gondová Z, Kožárová I, Poláková Z, Mad’arová M. Comparison of four microbiological inhibition tests for the screening of antimicrobial residues in the tissues of food-producing animals. Ital J Anim Sci 2014;13(4):729-735.

World Health Organization. Antimicrobial resistance. 2020. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed May 19, 2021.

Madoroba E, Kapeta D, Gelaw AK. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa. Onderstepoort J Vet Res 2016;83(1).

Wang HX, Ren LS, Yu X, Hu J, Chen Y, He GS, et al. Antibiotic residues in meat, milk and aquatic products in Shanghai and human exposure assessment. Food Control 2017;80:217-225.

Nhung NT, Van NTB, Cuong NV, Duong TTQ, Nhat TT, Hang TTT, et al. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal Salmonella from meat sold at wet markets and supermarkets in Vietnam. Int J Food Microbiol 2018;266:301-309.

Al-Mashhadany DA. Detection of antibiotic residues among raw beef in Erbil City (Iraq) and impact of temperature on antibiotic remains. IJFS 2019;8(1):6-10.

Yang Y, Qiu WQ, Li YX, Liu LJ. Antibiotic residues in poultry food in Fujian Province of China. Food Addit Contam Part B-Surveill 2020;13(3):177-184.

Oyedeji AO, Msagati TAM, Williams AB, Benson NU. Determination of antibiotic residues in frozen poultry by a solid-phase dispersion method using liquid chromatography-triple quadrupole mass spectrometry. Toxicol Rep 2019;6:951-956.

Rabia A, Sidrah S. Identification and quantification of antimicrobial activity in commercially available chicken meat in a large urban centre in Pakistan. CRFS 2020;3:173-177.

Rahimi Z, Shahbazi Y, Ahmadi F. Comparative screening of chloramphenicol residue in chicken tissues using four plate test and premi (R) test methods. J Pharm Sci 2018;24(2):157-162.

Tajik H, Malekinejad H, Razavi-Rouhani SM, Pajouhi MR, Mahmoudi R, Haghnazari A. Chloramphenicol residues in chicken liver, kidney and muscle: A comparison among the antibacterial residues monitoring methods of four plate test, ELISA and HPLC. Food Chem Toxicol 2010;48(8-9):2464-2468.

Pikkemaat MG, Rapallini M, Oostra-van DS, Elferink JWA. Comparison of three microbial screening methods for antibiotics using routine monitoring samples. Anal Chim Acta 2009;637(1-2):298-304.

Publicado

11.04.2022

Cómo citar

González-Aguilar, D. G., Ramírez-López, M. A., Uribe-Camberos, I. X., & Barba-León, J. (2022). Antimicrobial residues found in poultry commercialized in retail stores from the Metropolitan Area of Guadalajara, Jalisco. Revista Mexicana De Ciencias Pecuarias, 13(1), 187–199. https://doi.org/10.22319/rmcp.v13i1.5943
Metrics
Vistas/Descargas
  • Resumen
    730
  • PDF
    344
  • PDF
    340
  • Full text
    161

Número

Sección

Artículos

Métrica

Artículos más leídos del mismo autor/a