Salud porcina: historia, retos y perspectivas

Autores/as

  • José Francisco Rivera-Benítez Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Km 15. 5 Carretera México-Toluca, Palo Alto, Cuajimalpa, CP. 05110, Ciudad de México, México. http://orcid.org/0000-0002-5591-2379
  • Jazmín De la Luz-Armendáriz Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia, Ciudad de México, México.
  • Luis Gómez-Núñez Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Km 15. 5 Carretera México-Toluca, Palo Alto, Cuajimalpa, CP. 05110, Ciudad de México, México. http://orcid.org/0000-0002-3301-1510
  • Fernando Diosdado Vargas Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Km 15. 5 Carretera México-Toluca, Palo Alto, Cuajimalpa, CP. 05110, Ciudad de México, México. http://orcid.org/0000-0002-9700-3667
  • Guadalupe Socci Escatell Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Km 15. 5 Carretera México-Toluca, Palo Alto, Cuajimalpa, CP. 05110, Ciudad de México, México. http://orcid.org/0000-0003-2113-6364
  • Elizabeth Ramírez-Medina USDA/ARS Plum Island Animal Disease Center. Foreign Animal Disease Research Unit, Greenport NY, USA. University of Connecticut. Department of Pathobiology and Veterinary Science, Storrs, CT, USA. http://orcid.org/0000-0001-6566-8608
  • Lauro Velázquez-Salinas USDA/ARS Plum Island Animal Disease Center. Foreign Animal Disease Research Unit, Greenport NY, USA. Kansas State University. College of Veterinary Medicine, Manhattan, KS, USA. http://orcid.org/0000-0001-5550-8694
  • Humberto Ramírez-Mendoza Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia, Ciudad de México, México. http://orcid.org/0000-0002-5739-4077
  • María Antonia Coba Ayala Práctica Privada.
  • Catalina Tufiño-Loza Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Km 15. 5 Carretera México-Toluca, Palo Alto, Cuajimalpa, CP. 05110, Ciudad de México, México. Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia, Ciudad de México, México. http://orcid.org/0000-0003-2772-5899
  • Marta Macías García LAPISA Salud Animal. La Piedad, Michoacán, México.
  • Víctor Carrera-Aguirre SANFER Salud Animal. Ciudad de México, México.
  • Rebeca Martínez-Bautista Zoetis Swine, Ciudad de México, México.
  • María José Martínez-Mercado Zoetis Swine, Ciudad de México, México. http://orcid.org/0000-0001-9634-2758
  • Gerardo Santos-López Instituto Mexicano del Seguro Social. Centro de Investigación Biomédica de Oriente, Atlixco, Puebla, México. http://orcid.org/0000-0002-3793-3117
  • Irma Herrera-Camacho Instituto Mexicano del Seguro Social. Centro de Investigación Biomédica de Oriente, Atlixco, Puebla, México. http://orcid.org/0000-0003-2426-8469
  • Ignacio Siañez-Estrada Benemérita Universidad Autónoma de Puebla. Centro de Química, Instituto de Ciencias, Puebla, México. http://orcid.org/0000-0001-5059-8424
  • Manuel Zapata Moreno Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia, Ciudad de México, México.

DOI:

https://doi.org/10.22319/rmcp.v12s3.5879

Palabras clave:

Porcicultura, Enfermedades infecciosas, Tecnología, Innovación

Resumen

En los sistemas de producción porcina, uno de los puntos críticos que deben ser atendidos con estricto rigor, es la salud de los cerdos. La salud, es un componente estructural del bienestar animal y refleja un estado óptimo de los animales, lo que repercute directamente en un mayor desempeño productivo y mejores condiciones de desarrollo. Uno de los eslabones más frágiles de la salud de los cerdos, es la presencia de enfermedades infecciosas más importantes, las cuales pueden representar pérdidas hasta del 100 % de la producción, por lo cual, debe ser un tema de atención constante, y continuamente vigilado por el Médico Veterinario Zootecnista y los productores, en perfecta coordinación con las autoridades sanitarias oficiales. En la actualidad, la implementación de mejores prácticas en la cadena productiva es de interés para productores y consumidores. El control de las enfermedades infecciosas debe ser un tema de colaboración entre los diferentes actores del entorno y ser considerado un bien público, ya que las repercusiones negativas, pueden ser desde el nivel local hasta mundial. En la presente revisión, se abordará la temática relacionada con las principales enfermedades infecciosas que ponen en riesgo la salud porcina, el impacto, las principales aportaciones realizadas por el Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) en sus 35 años de vida, específicamente en el Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID-SAI), anteriormente conocido como el emblemático CENID-Microbiología o Palo Alto.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

José Francisco Rivera-Benítez, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Km 15. 5 Carretera México-Toluca, Palo Alto, Cuajimalpa, CP. 05110, Ciudad de México, México.

Laboratorio de Virología

 

Investigador Titular C

 

 

 

Jazmín De la Luz-Armendáriz, Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia, Ciudad de México, México.

Departamento de medicina y zootecnia de rumiantes.

Profesora asociada A, tiempo completo.

Luis Gómez-Núñez, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Km 15. 5 Carretera México-Toluca, Palo Alto, Cuajimalpa, CP. 05110, Ciudad de México, México.

Laboratorio de Virología

Investigador Titular C

Fernando Diosdado Vargas, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Km 15. 5 Carretera México-Toluca, Palo Alto, Cuajimalpa, CP. 05110, Ciudad de México, México.

Laboratorio de Virología

Investigador Titular C

Guadalupe Socci Escatell, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Km 15. 5 Carretera México-Toluca, Palo Alto, Cuajimalpa, CP. 05110, Ciudad de México, México.

Laboratorio de Leptospirosis

Investigadora Titular C

Elizabeth Ramírez-Medina, USDA/ARS Plum Island Animal Disease Center. Foreign Animal Disease Research Unit, Greenport NY, USA. University of Connecticut. Department of Pathobiology and Veterinary Science, Storrs, CT, USA.

Plum Island Animal Disease Center

Visiting Scientist

 

Lauro Velázquez-Salinas, USDA/ARS Plum Island Animal Disease Center. Foreign Animal Disease Research Unit, Greenport NY, USA. Kansas State University. College of Veterinary Medicine, Manhattan, KS, USA.

Plum Island Animal Disease Center

Visiting Scientist

Humberto Ramírez-Mendoza, Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia, Ciudad de México, México.

Departamento de Microbiología e Inmunología

Profesor titular tiempo completo

María Antonia Coba Ayala, Práctica Privada.

Investigadora retirada del Laboratorio de Virología, cargo: Investigadora Titular C

Catalina Tufiño-Loza, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Km 15. 5 Carretera México-Toluca, Palo Alto, Cuajimalpa, CP. 05110, Ciudad de México, México. Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia, Ciudad de México, México.

Laboratorio de Virología

Técnico en investigación

Marta Macías García, LAPISA Salud Animal. La Piedad, Michoacán, México.

LAPISA

Jefa de Biológicos

 

Víctor Carrera-Aguirre, SANFER Salud Animal. Ciudad de México, México.

SANFER

Jefe de Distrito

Rebeca Martínez-Bautista, Zoetis Swine, Ciudad de México, México.

Zoetis México

Asesor Técnico Unidad Porcinos

 

María José Martínez-Mercado, Zoetis Swine, Ciudad de México, México.

Zoetis México

Asesor Swine Business Unit

Gerardo Santos-López, Instituto Mexicano del Seguro Social. Centro de Investigación Biomédica de Oriente, Atlixco, Puebla, México.

Laboratorio de Virología

Investigador Titular B

Irma Herrera-Camacho, Instituto Mexicano del Seguro Social. Centro de Investigación Biomédica de Oriente, Atlixco, Puebla, México.

Laboratorio de Bioquímica y Biología Molecular

Profesora Tiempo Completo

Ignacio Siañez-Estrada, Benemérita Universidad Autónoma de Puebla. Centro de Química, Instituto de Ciencias, Puebla, México.

Laboratorio de Bioquímica y Biología Molecular

Alumno doctorado

Manuel Zapata Moreno, Universidad Nacional Autónoma de México. Facultad de Medicina Veterinaria y Zootecnia, Ciudad de México, México.

Laboratorio de Virología

Estudiante de maestría

Citas

FAO. Food and agriculture organization. FAOSTAT. Statistical databases. Food and Agriculture Organization of the United Nations. 2020. http://www.fao.org/statistics/es/. Consultado 10 Oct, 2020.

SIAP. Servicio de información agroalimentaria y pesquera. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. 2010. http://www.siap.gob.mx. Consultado 10 Oct, 2020.

Montero LE, Martínez GR, Herradora ML, Ramírez HG, Espinosa HS, Sánchez HM, et al. Alternativas para la producción porcina a pequeña escala. 1era ed. Ciudad de México, México: Universidad Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia; 2015.

Trujillo OM. Ed. Introducción a la Zootecnia. 1era ed. Ciudad de México, México: Universidad Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia; 2006.

WHO. World Health Organization. Coronavirus Disease (COVID-19) Dashboard. (2020). https://covid19.who.int/. Accessed 10 Oct, 2020.

Segalés J. Are pigs susceptible to SARS-CoV-2?. 2020 Allen D. Leman Swine Conference. Sain Paul, Minnesota, USA. 2020: 30. https://sites.google.com/a/umn.edu/leman-swine-conference/current-years-conference#h.xr8bmpwikouh. Accessed 10 Oct, 2020.

Gladue D. Development of live-attenuated vaccines for African swine fever virus. Allen D. Leman Swine Conference. Sain Paul, Minnesota, USA. 2020: 10. https://sites.google.com/a/umn.edu/leman-swine-conference/current-years-conference#h.xr8bmpwikouh. Accessed 10 Oct, 2020.

Yan Z. Controlling and eliminating African Swine Fever Virus from swine herd by qPCR-based test-removal through organized sampling. Allen D. Leman Swine Conference. Sain Paul, Minnesota, USA. 2020: 39. https://sites.google.com/a/umn.edu/leman-swine-conference/current-years-conference#h.xr8bmpwikouh. Accessed 10 Oct, 2020.

González L. Crisis sanitaria dispara envíos de carne de cerdo mexicana a China. El economista. https://www.eleconomista.com.mx/empresas/Crisis-sanitaria-dispara-envios-de-carne-de-cerdo-mexicana-a-China-20200227-0027.html. Consultado 10 Oct, 2020.

FAO. Food and agriculture organization. La agricultura mundial en la perspectiva del año 2050. 2009. http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/Issues_papers_SP/La_agricultura_mundial.pdf. Consultado 10 Oct, 2020.

Loosli CG. Synergism between respiratory viruses and bacteria. Yale J Biol Med 1968;40(5):522–540.

Saade G, Deblanc C, Bougon J, Bougon J, Marois-Créhan C, Fablet C, et al. Coinfections and their molecular consequences in the porcine respiratory tract. Vet Res 2020;(51):80.

Opriessnig T, Giménez-Lirola LG, Halbur PG. Polymicrobial respiratory disease in pigs. Anim Health Res Rev 2011;12(2):133–148.

Gottschalk M, Broes A. Actinobacillosis. In: Zimmerman JJ, et al, editors. 11th ed. Diseases of swine. Hoboken, NJ, USA: Wiley-Blackwell; 2019:749–766.

Pieters MG, Maes D. Mycoplasmosis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J. 11th ed. Diseases of swine. Hoboken, NJ, USA: Wiley-Blackwell; 2019:863–883.

Li B, Du L, Xu X, Sun B, Yu Z, Feng Z. et al. Transcription analysis on response of porcine alveolar macrophages to co-infection of the highly pathogenic porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Virus Res 2015;22 (196):60-69.

Deblanc C, Gorin S, Quéguiner S, Gautier-Bouchardon AV, Ferré S, Amenna N, et al. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype. Vet Microbiol 2012;157(1-2):96-105.

Gebhardt JT, Tokach MD, Dritz SS, DeRouchey JM, Woodworth JC, Goodband RD, et al. Postweaning mortality in commercial swine production II: review of infectious contributing factors. Transl Anim Sci 2020;4(2):485–506.

Silva GS, Yeske P, Morrison RB, Linhares DCL. Benefit-cost analysis to estimate the payback time and the economic value of two Mycoplasma hyopneumoniae elimination methods in breeding herds. Prev Vet Med 2019;(168):95-102.

Gottschalk M, Segura M. Streptococcosis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J. 11th ed. Diseases of swine. Hoboken, NJ, USA: Wiley-Blackwell; 2019:934–950.

Goyette-Desjardins G, Auger JP, Xu J, Segura M, Gottschalk M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect 2014;3(6):e45.

Gottschalk M, Higgins R, Boudreau M. Use of polyvalent coagglutination reagents for serotyping of Streptococcus suis. J Clin Microbiol 1993;31(8):2192-2194.

Chatellier S, Harel J, Zhang Y, Gottschalk M, Higgins R, Devriese LA, et al. Phylogenetic diversity of Streptococcus suis strains of various serotypes as revealed by 16S rRNA gene sequence comparison. Int J Syst Bacteriol 1998;48(Pt 2):581-589.

Diosdado VF, Cordova LD, Socci EG, Morilla GA. Association between aujeszkys disease virus and/or Mycoplasma hyopneumoniae to increase Actinobacillus pleuropneumoniae infection. Reunión Nacional de Investigación Pecuaria en México. Veracruz, Ver. 1997:374.

Serrano-Rubio LE, Tenorio-Gutiérrez V, Suárez-Güemes F, Reyes-Cortés R, Rodríguez-Mendiola M, Arias-Castro C. et al. Identification of Actinobacillus pleuropneumoniae biovars 1 and 2 in pigs using a PCR assay. Mol Cell Probes 2008;22(5-6):305-312.

Socci EG, Carrera SE, Diosdado VF. Polymerase Chain Reaction (PCR) for detection of Mycoplasma hyopneumoniae, responsable of Enzootic Pneumonia in pigs. J Anim Vet Adv 2011;10(23):3065-3068.

Alvarez-Ordóñez A, Martínez-Lobo FJ, Arguello H, Carvajal A, Rubio P. Swine dysentery: Aetiology, pathogenicity, determinants of transmission and the fight against the disease. Int J Environ Res Public Health 2013;10(5):1927-47.

Hampson D, Burrough E. Swine Dysentery and Brachyspiral Colitis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J. 11th ed. Diseases of swine. Hoboken, NJ, USA: Wiley-Blackwell; 2019:951–970.

Leite FL, Abrahante JE, Vasquez E, Vannucci F, Gebhart CJ, Winkelman N. et al. A cell proliferation and inflammatory signature is induced by Lawsonia intracellularis infection in swine. mBio 2019;10(1):e01605-18.

Denisova L. The problem of proliferative enteropathy is successfully solved. Svinovodstvo 2017;(4):67-68.

Vannucci F, Gebhart C, McOrist S. Proliferative Enteropathy. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J. 11th ed. Diseases of swine. Hoboken, NJ, USA: Wiley-Blackwell; 2019:898–911.

Griffith R, Carlson S, Krull A. Salmonellosis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J. 11th ed. Diseases of swine. Hoboken, NJ, USA: Wiley-Blackwell; 2019:912–925.

Martínez-Avilés M, Garrido-Estepa M, Álvarez J, de la Torre A. Salmonella surveillance systems in swine and humans in Spain: A Review. Vet Sci 2019;6(1):20.

Fairbrother J, Nadeau E. Colibacillosis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J. 11th ed. Diseases of swine. Hoboken, NJ, USA: Wiley-Blackwell; 2019:807–834.

Cheng D, Zhu S, Su Z, Zuo W, Lu H. Prevalence and isoforms of the pathogenicity island ETT2 among Escherichia coli isolates from colibacillosis in pigs and mastitis in cows. Curr Microbiol 2012;(64):43–49.

Nordeste R, Tessema A, Sharma S, Kovac Z, Wang C, Morales R, et al. Molecules produced by probiotics prevent enteric colibacillosis in pigs. BMC Vet Res 2017;(13):335.

García CL, Socci EG, Barrón FL, Arriaga DC, Morilla GA. Diagnóstico de ileítis porcina por medio de la reacción en cadena de la polimerasa. Vet Méx 1998;29(3):263-267.

Socci EG, Diosdado VF, Carrera SE, Arriaga DC. Determinación de la frecuencia de piaras infectadas con Lawsonia intracellularis en México mediante la técnica de PCR. Téc Pecu Méx 2005;43(2):211-218.

Ontiveros CMDL, Mancera MA, Vázquez NJ, Tenorio GVR. Determinación de la existencia de plásmidos en aislamientos de Salmonella enteritidis (fagotipos 4 y 8) y su análisis en la resistencia antimicrobiana. Téc Pecu Méx 2004;42(3):325-332.

Vélez IA, Espinosa GJA, Cuevas RV, Diosdado VF, Buendía RG. Impacto de tecnologías pecuarias en el ingreso neto de porcicultores en México. Reunión Nacional de Investigación Pecuaria, Nuevo Vallarta, Nayarit. 2018:594-595.

Opriessnig T, Karuppannan AK, Castro AMMG, Xiao CT. Porcine circoviruses: current status, knowledge gaps and challenges. Virus Res 2020;(286):198044.

Ouyang T, Niu G, Liu X, Zhang X, Zhang Y, Ren L. Recent progress on porcine circovirus type 3. Infect Genet Evol 2019;(73):227-233.

Tischer I, Rasch R, Tochtermann G. Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralbl Bakteriol Orig A 1974;226(2):153-67.

Tischer I, Gelderblom H, Vettermann W, Koch MA. A very small porcine virus with circular single-stranded DNA. Nature 1982;295(5844):64-6.

Harding JCS, Clark EG. Recognizing and diagnosing postweaning multisystemic wasting syndrome (PMWS) Swine Health Prod 1997;(5):201-203.

Harding JCS, Clark EG, Strokappe JH, Wilson PI, Ellis JA. Postweaning multisystemic wasting syndrome: Epidemiology and clinical presentation. Swine Health Prod 1998;(6):249-254.

Allan GM, Ellis JA. Porcine circoviruses: A review. J Vet Diagn Invest 2000;(12):3-14.

Ramírez-Mendoza H, Martínez C, Mercado C, Castillo-Juárez H, Hernández J, Segalés J. Porcine circovirus type 2 antibody detection in backyard pigs from Mexico City. Res Vet Sci 2007;(83):130–132.

Ramírez-Mendoza H, Castillo-Juárez H, Hernández J, Correa P, Segalés J. Retrospective serological survey of Porcine circovirus-2 infection in Mexico. Can J Vet Res 2009;(73):21–24.

Bedolla LF, Trujillo OME, Mendoza ES, Quintero RV, Alonso MR, Ramírez-Mendoza H. et al. Identification and genotyping of porcine circovirus type II (PCV2) in Mexico. VirusDisease 2018;(29):385–389.

De la Luz AJ, Rivera BJF, Gómez NL. Phylogenetic analysis of porcine circovirus type 3 infect a swine production system in Mexico City. Proc. 10th European Symposium of porcine health management. Barcelona, Spain. 2018:480.

DiosdadoVF, Socci EG, Martinez LA, Carrera SE, Santiago CJ. Study of porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) frequencies and coinfection in Mexican farrow to finish pig farms. J Vet Med Anim Health 2018;10(3):96-100.

Palinski R, Piñeyro P, Shang P, Yuan F, Guo R, Fang Y. et al. A novel porcine circovirus distantly related to known circoviruses is associated with porcine dermatitis and nephropathy syndrome and reproductive failure. J Virol 2016;91(1):e01879-16.

Hayashi S, Ohshima Y, Furuya Y, Nagao A, Oroku K, Tsutsumi N. et al. First detection of porcine circovirus type 3 in Japan. J Vet Med Sci 2018;80(9):1468-1472.

Ku X, Chen F, Li P, Wang Y, Yu X, Fan S, et al. Identification and genetic characterization of porcine circovirus type 3 in China. Transbound Emerg Dis 2017;64(3):703-708.

Zhao D, Wang X, Gao Q, Huan C, Wang W, Gao S, et al. Retrospective survey and phylogenetic analysis of porcine circovirus type 3 in Jiangsu province, China, 2008 to 2017. Arch Virol 2018;163(9):2531-2538.

Collins PJ, McKillen J, Allan G. Porcine circovirus type 3 in the UK. Vet Rec 2017;181(22):599.

Faccini S, Barbieri I, Gilioli A, Sala G, Gibelli LR, Moreno A. et al. Detection and genetic characterization of Porcine circovirus type 3 in Italy. Transbound Emerg Dis 2017;64(6):1661-1664.

Fux R, Söckler C, Link EK, Renken C, Krejci R, Sutter G, et al. Full genome characterization of porcine circovirus type 3 isolates reveals the existence of two distinct groups of virus strains. Virol J 2018;15(1):25.

Ye X, Berg M, Fossum C, Wallgren P, Blomström AL. Detection and genetic characterisation of porcine circovirus 3 from pigs in Sweden. Virus Genes 2018;54(3):466-469.

Tochetto C, Lima DA, Varela APM, Loiko MR, Paim WP, Scheffer CM, et al. Full-genome sequence of porcine Circovirus type 3 recovered from serum of sows with stillbirths in Brazil. Transbound Emerg Dis 2018;65(1):5-9.

Zimmerman JJ, Dee SA, Holtkamp DJ, Murtaugh MP, Stadejek T, Stevenson GW, et al. Porcine Reproductive and Respiratory Syndrome Viruses (Porcine Arteriviruses). In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J. 11th ed. Diseases of swine. Hoboken, NJ, USA: Wiley-Blackwell; 2019:685–708.

Hill H. Overview and history of mystery swine disease (swine infertility/respiratory syndrome). Proceedings of the mystery swine disease committee meeting. Madison, WI, USA. 1990:29-30.

Wensvoort G, Terpstra C, Pol JM, ter Laak EA, Bloemraad M, de Kluyver EP, et al. Mystery swine disease in The Netherlands: the isolation of Lelystad virus. Vet Q 1991;13(3):121-30.

Collins JE, Benfield DA, Christianson WT, Harris L, Hennings JC, Shaw DP, et al. Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. J Vet Diagn Invest 1992;4(2):117-126.

Meng XJ, Paul PS, Halbur PG, Lum MA. Phylogenetic analyses of the putative M (ORF 6) and N (ORF 7) genes of porcine reproductive and respiratory syndrome virus (PRRSV): implication for the existence of two genotypes of PRRSV in the U.S.A. and Europe. Arch Virol 1995;140(4):745-755.

Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc 2005;227(3):385-92.

Amador, C.J. Evaluación del impacto económico del virus PRRS en granjas porcinas en México [tesis maestría]. Ciudad de México, México. Universidad Nacional Autónoma de México; 2016.

Millán SF, Cantó AG, Weimersheimer RJ, Coba AMA, Anaya EAM, Correa GP. Estudio seroepidemiológico para determinar la presencia de anticuerpos contra el virus del síndrome disgenésico del cerdo en México. Téc Pecu Méx 1994;32(3):139-144.

Diosdado VF, Socci EG, Morilla GA. Frecuencia de granjas infectadas con el virus del síndrome disgenésico y respiratorio del cerdo (PRRS) en México [resumen]. Reunión Anual de Investigación Pecuaria en México. Veracruz, México. 1997:375.

Sierra N, Ramirez R, Mota D. Isolation of PRRS virus in Mexico: a clinical, serological and virological study. Arch Med Vet 2000;32(1):1-9.

Toiber AE. Análisis de la variabilidad antigénica y genética del virus del síndrome respiratorio y reproductivo porcino (PRRSV) en cepas mexicanas [tesis maestría]. Ciudad de México, México. Universidad Nacional Autónoma de México; 2014.

Martínez-Bautista NR, Sciutto-Conde E, Cervantes-Torres J, Segura-Velázquez R, Mercado García MC, Ramírez-Mendoza H, et al. Phylogenetic analysis of ORF5 and ORF7 of porcine reproductive and respiratory syndrome (PRRS) virus and the frequency of wild-type PRRS virus in México. Transbound Emerg Dis 2018;65(4):993–1008.

Stephano HA, Gay GM, Ramírez TC. Encephalomyelitis, reproductive failure and corneal opacity (blue eye) in pigs, associated with a paramyxovirus infection. Vet Rec 1988;122(1):6-10. Erratum in: Vet Rec 1988;122(17):420.

Moreno-López J, Correa-Girón P, Martinez A, Ericsson A. Characterization of a paramyxovirus isolated from the brain of a piglet in Mexico. Arch Virol 1986;91(3-4):221-31.

Sundqvist A, Berg M, Hernandez-Jauregui P, Linné T, Moreno-López J. The structural proteins of a porcine paramyxovirus (LPMV). J Gen Virol 1990;71( Pt 3):609-613.

Rima B, Balkema-Buschmann A, Dundon WG, Duprex P, Easton A, Fouchier R, et al. ICTV virus taxonomy profile: Paramyxoviridae. J Gen Virol 2019;100(12):1593-1594.

Cuevas-Romero JS, Blomström AL, Berg M. Molecular and epidemiological studies of Porcine rubulavirus infection - an overview. Infect Ecol Epidemiol 2015;(5):29602.

Ramirez-Mendoza H, Hernandez-Jauregui P, Reyes-Leyva J, Zenteno E, Moreno-Lopez J, Kennedy S. Lesions in the reproductive tract of boars experimentally infected with Porcine rubulavirus. J Comp Pathol 1997;117(3):237-52.

Hernández-Jáuregui P, Ramírez-Mendoza H, Mercado-García C, Moreno-López J, Kennedy S. Experimental Porcine rubulavirus (La Piedad-Michoacan virus) infection in pregnant gilts. J Comp Pathol 2004;130(1):1-6.

Rivera-Benitez JF, Cuevas-Romero S, Pérez-Torres A, Reyes-Leyva J, Hernández J, Ramírez-Mendoza H. Respiratory disease in growing pigs after Porcine rubulavirus experimental infection. Virus Res 2013a;176(1-2):137-43.

Rivera-Benitez JF, Martínez-Bautista R, Pérez-Torres A, García-Contreras ADC, Reyes-Leyva J, Hernández J, et al. Persistence of Porcine rubulavirus in experimentally infected boars. Vet Microbiol 2013b;162(2-4):491-98.

Herrera J, Gómez-Núñez L, Lara-Romero R, Diosdado F, Martínez-Lara A, Jasso M. et al. Acute neurologic disease in Porcine rubulavirus experimentally infected piglets. Virus Res 2017;230:50-58.

Ramírez MH, Carreón NR, Mercado GC, Rodríguez TJ. Hemoaglutinación e inhibición de la hemoaglutinación del paramixovirus porcino a través de la modificación de algunas variables que participan en la prueba. Vet Méx 1996;27(3):257-59.

Cuevas-Romero S, Blomström AL, Alvarado A, Hernández-Jauregui P, Rivera-Benitez F, Ramírez-Mendoza H, et al. Development of a real-time RT-PCR method for detection of Porcine rubulavirus (PoRV-LPMV). J Virol Methods 2013;189(1):1-6.

Rivera-Benitez JF, García-Contreras Adel C, Reyes-Leyva J, Hernández J, Sánchez-Betancourt JI, Ramírez-Mendoza H. Efficacy of quantitative RT-PCR for detection of the nucleoprotein gene from different Porcine rubulavirus strains. Arch Virol 2013c;158(9):1849-56.

Garcia-Barrera AA, Del Valle A, Montaño-Hirose JA, Barrón BL, Salinas-Trujano J, Torres-Flores J. Full-genome sequencing and phylogenetic analysis of four neurovirulent Mexican isolates of Porcine rubulavirus. Arch Virol 2017;162(6):1765-1768.

Escobar-López AC, Rivera-Benitez JF, Castillo-Juárez H, Ramírez-Mendoza H, Trujillo-Ortega ME, Sánchez-Betancourt JI. Identification of antigenic variants of the Porcine rubulavirus in sera of field swine and their seroprevalence. Transbound Emerg Dis 2012;59(5):416-20.

Rivera-Benitez JF, Rosas-Estrada K, Pulido-Camarillo E, de la Peña-Moctezuma A, Castillo-Juárez H, Ramírez-Mendoza H. Serological survey of veterinarians to assess the zoonotic potential of three emerging swine diseases in Mexico. Zoonoses Public Health 2014;61(2):131-137.

Thibault PA, Watkinson RE, Moreira-Soto A, Drexler JF, Lee B. Zoonotic potential of emerging paramyxoviruses: knowns and unknowns. Adv Virus Res 2017;(98):1-55.

Cuevas-Romero JS, Rivera-Benítez JF, Hernández-Baumgarten E, Hernández-Jaúregui P, Vega M, Blomström AL, et al. Cloning, expression and characterization of potential immunogenic recombinant hemagglutinin-neuraminidase protein of Porcine rubulavirus. Protein Expr Purif 2016;(128):1-7.

Cerriteño-Sánchez JL, Santos-López G, Rosas-Murrieta NH, Reyes-Leyva J, Cuevas-Romero S, Herrera-Camacho I. Production of an enzymatically active and immunogenic form of ectodomain of Porcine rubulavirus hemagglutinin-neuraminidase in the yeast Pichia pastoris. J Biotechnol 2016;(223):52-61.

Siañez-Estrada LI, Rivera-Benítez JF, Rosas-Murrieta NH, Reyes-Leyva J, Santos-López G, Herrera-Camacho I. Immunoinformatics approach for predicting epitopes in HN and F proteins of Porcine rubulavirus. PLoS One. 2020;15(9):e0239785.

MacLachlan J, Dubovi E. Fenner’s Veterinary Virology. 5ª ed. London, UK: Academic Press; 2016.

Jung K, Saif LJ. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet J 2015;204(2):134-43.

Chen Q, Gauger P, Stafne M, Thomas J, Arruda P, Burrough E, et al. Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets. Virology 2015;482:51-59.

Boniotti MB, Papetti A, Lavazza A, Alborali G, Sozzi E, Chiapponi C, et al. Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus. Italy Emerg Infect Dis 2016;22(1):83-87.

Saif, L, Wang, Q, Vlasova, A, Jung, K, Xiao, S. Coronaviruses. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J. 11th ed. Diseases of swine. Hoboken, NJ, USA: Wiley-Blackwell; 2019:488–523.

Huang Y, Dickerman A, Pineyro P, Li L, Fang L, Kiehne R, et al. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. mBio 2013;4(5):e00737–00713.

Fajardo R, Alpizar A, Martinez A, Quintero, V, Diosdado, F, Córdova, D, et al. Two cases report of PED in different states in México. International Pig Veterinary Society (IPVS) Congress Cancun, Mexico. 2014:645.

Rivera-Benítez JF, Gómez-Núñez L, Diosdado VF, Socci EG, De la Luz AJ, Quintero V, et al. Detección de nuevos coronavirus causantes de diarreas agudas en cerdos lactantes. Reunión Nacional de Investigación Pecuaria. Estado de México, México. 2015:166-167.

OIE-WAHID. Follow-up report No.1 Final Report. Virus de la diarrea epidémica porcina, México. 2016. https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?reportid=19584Accessed 17 Oct, 2020.

PORCIMEX. Compendio estadístico del sector porcícola. 2015. México. http://www.porcimex.org/Compendio%20Estadistico%202015.pdf Consultado 17 Oct, 2020.

Trujillo-Ortega M, Beltrán-Figueroa R, García-Hernández M, Juárez-Ramírez M, Sotomayor-González A, Hernández-Villegas E, et al. Isolation and characterization of porcine epidemic diarrhea virus associated with the 2014 disease outbreak in Mexico: case report. BMC Vet Res 2016;(12):132.

DOF. Diario Oficial de la Federación. Acuerdo mediante el cual se dan a conocer en los Estados Unidos Mexicanos las enfermedades y plagas exóticas y endémicas de notificación obligatoria de los animales terrestres y acuáticos. 2018. https://dof.gob.mx/nota_detalle.php?codigo=5545304&fecha=29/11/2018. Consultado 17 Oct, 2020.

Lara-Romero R, Gómez-Núñez L, Cerriteño-Sánchez JL, Márquez-Valdelamar L, Mendoza-Elvira S, Ramírez-Mendoza H, et al. Molecular characterization of the spike gene of the porcine epidemic diarrhea virus in Mexico, 2013-2016. Virus genes 2018;54(2): 215–224.

Barrera AM. Construcción de un sistema de expresión para la proteína N del virus de la diarrea epidémica porcina (vDEP) en E. coli y caracterización antigénica en ensayos inmunoabsorbentes [tesis maestría]. Ciudad de México, México. Universidad Nacional Autónoma de México; 2018.

Castillo CK. Estudio comparativo de la virulencia de una cepa epidémica y una cepa INDEL del virus de diarrea epidémica porcina [tesis maestría]. Ciudad de México, México. Universidad Nacional Autónoma de México; 2019.

Zapata MM. Evaluación de un biológico recombinante del virus de diarrea epidémica porcina en cerdos en engorda [tesis licenciatura]. Ciudad de México, México. Universidad Nacional Autónoma de México; 2020.

Arenas LT. Escalamiento a biorreactor de la producción heteróloga y la purificación de dos fragmentos de la proteína S del vDEP en Escherichia coli [tesis maestría]. Instituto Nacional de México. Instituto Tecnológico de Celaya; 2018.

Ma W, Lager KM, Vincent AL, Janke BH, Gramer MR, Richt JA. The role of swine in the generation of novel influenza viruses. Zoonoses Public Health 2009;56(6-7):326-37.

Yoon SW, Webby RJ, Webster RG. Evolution and ecology of influenza A viruses. Curr Top Microbiol Immunol 2014;(385):359-375.

Ma W, García-Sastre A, Schwemmle M. Expected and unexpected features of the newly discovered bat influenza A-like viruses. PLoS Pathog 2015;11(6):e1004819.

Ma W. Swine influenza virus: Current status and challenge. Virus Res 2020;(288):198118.

Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, et al. Influenza. Nat Rev Dis Primers 2018;4(1):3.

Medina RA, García-Sastre A. Influenza A viruses: new research developments. Nat Rev Microbiol 2011;9(8):590-603.

Denney L, Ho LP. The role of respiratory epithelium in host defense against influenza virus infection. Biomed J 2018;41(4):218-233.

Taubenberger JK, Kash JC. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010;7(6):440-51.

Torremorell M, Allerson M, Corzo C, Diaz A, Gramer M. Transmission of influenza A virus in pigs. Transbound Emerg Dis 2012;59 (Suppl 1):68-84.

Saavedra-Montañez M, Vaca L, Ramírez-Mendoza H, Gaitán-Peredo C, Bautista-Martínez R, Segura-Velázquez R. et al. Identification and genomic characterization of influenza viruses with different origin in Mexican pigs. Transbound Emerg Dis 2019;66 (1):186-194.

Janke BH. Clinicopathological features of Swine influenza. Curr Top Microbiol Immunol 2013;(370):69-83.

Janke BH. Influenza A virus infections in swine: pathogenesis and diagnosis. Vet Pathol 2014;51(2):410-426.

Saavedra-Montañez M, Castillo-Juárez H, Sánchez-Betancourt I, Rivera-Benitez JF, Ramírez-Mendoza H. Serological study of influenza viruses in veterinarians working with swine in Mexico. Arch Virol 2017;162(6):1633-1640.

Mena I, Nelson MI, Quezada-Monroy F, Dutta J, Cortes-Fernández R, Lara-Puente JH, et al. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. Elife 2016;5:e16777.

Juárez-Ramírez M, Sánchez-Betancourt I, Trujillo-Ortega ME, Mendoza-Elvira S, Carreón-Nápoles R, Fuente-Martínez B, et al. Clinical evaluation, serological response and lesions generated by the A/Mexico/La Gloria-3/2009/H1N1 and A/swine/New Jersey/11/1976/H1N1 influenza viruses in colostrated and non-colostrated pigs. Virusdisease 2019;30(3):433-440.

Saavedra-Montañez M, Carrera-Aguirre V, Castillo-Juárez H, Rivera-Benitez F, Rosas-Estrada K, Pulido-Camarillo E. et al. Retrospective serological survey of influenza viruses in backyard pigs from Mexico City. Influenza Other Respir Viruses 2013;7(5):827-32.

Van Reeth K, Ma W. Swine influenza virus vaccines: to change or not to change-that's the question. Curr Top Microbiol Immunol 2013;(370):173-200.

Diosdado VF, González-Vega D, Moles-Cervantes LP y Morilla GM. Association between antibodies against porcine reproductive and respiratory syndrome virus and other pathogens. Vet Méx 2004;35(2):147-152.

Rivera-Benitez JF, De la Luz-Armendáriz J, Saavedra-Montañez M, Jasso-Escutia MÁ, Sánchez-Betancourt I, Pérez-Torres A, et al. Co-infection of classic swine H1N1 influenza virus in pigs persistently infected with Porcine rubulavirus. Vet Microbiol 2016;(184):31-39.

Mengeling WL, Lager KM, Vorwald AC. The effect of porcine parvovirus and porcine reproductive and respiratory syndrome virus on porcine reproductive performance. Anim Reprod Sci 2000;(60-61):199-210.

Truyen U, Streck AF. Parvoviruses. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J. 11th ed. Diseases of swine. Hoboken, NJ, USA: Wiley-Blackwell; 2019:611–621.

Xiao CT, Giménez-Lirola LG, Jiang YH, Halbur PG, Opriessnig T. Characterization of a novel porcine parvovirus tentatively designated PPV5. PLoS One 2013;8(6):e65312.

Streck AF, Bonatto SL, Homeier T, Souza CK, Gonçalves KR, Gava D, et al. High rate of viral evolution in the capsid protein of porcine parvovirus. J Gen Virol 2011;92(Pt 11):2628-2636.

Cadar D, Dán Á, Tombácz K, Lőrincz M, Kiss T, Becskei Z, et al. Phylogeny and evolutionary genetics of porcine parvovirus in wild boars. Infect Genet Evol 2012;12(6):1163-71.

Shangjin C, Cortey M, Segalés J. Phylogeny and evolution of the NS1 and VP1/VP2 gene sequences from porcine parvovirus. Virus Res 2009;140(1-2):209-215.

Streck AF, Homeier T, Foerster T, Fischer S, Truyen U. Analysis of porcine parvoviruses in tonsils and hearts from healthy pigs reveals high prevalence and genetic diversity in Germany. Arch Virol 2013a;(158):1173–1780.

Zeeuw EJL, Leinecker N, Herwig V, Selbitz HJ, Truyen U. Study of the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts. J Gen Virol 2007;88(Pt 2):420-427.

Ramírez MH, Sánchez MPH, Zepeda MOO, Espino RMG, Correa GP. Seroprevalencia de anticuerpos contra parvovirus porcino (PVP) en cerdas y ratas en granjas porcinas del ciclo completo. Téc Pecu Méx 1991;29(3):159-164.

Socci EG, Diosdado VF, González VG, Corona BE, Morilla GA. Perfil serológico de granjas donde se vacunaba o no a las hembras contra el parvovirus porcino. Téc Pecu Méx 1996;34(2):104-110.

Carrera-Aguirre VM, Mercado GC, Carreón NR, Haro TM. Seroprevalencia y frecuencia de títulos de anticuerpos contra parvovirus porcino en cerdos de traspatio del Distrito Federal en el periodo 2000-2009. Congreso Nacional AMVEC. Puerto Vallarta, Jalisco, México. 2011:1

Zhou B. Classical Swine Fever in China-An update minireview. Front Vet Sci 2019;(6):187.

Martínez MA, Torres CJ, Martínez SA, Bordier LD, Partida OY, Morilla GA. Análisis de la cadena de frío de la vacuna contra la fiebre porcina clásica. Téc Pecu Méx 1992;30(1):23-30.

Coba AMA, Baez RU, Anaya EA, Correa GP. Protección conferida por la vacuna PAV-250 contra la fiebre porcina clásica al vacunar cerdos de uno, siete, 15 y 21 días de edad. Téc Pecu Méx 1992;30(2):91-99.

Báez RU, Coba AMA, Anaya EA, Correa GP, Rosales OC. Inocuidad del virus vacunal PAV-250 contra la fiebre porcina clásica (FPC) en cerdas en celo y gestantes, sin antecedentes de vacunación. Téc Pecu Méx 1995;33(3):135-147.

Martínez SA, Cisneros MI, González VD, Arriaga DC, Morilla GA. Perfil inmunológico de cerdos inoculados con el virus de la fiebre porcina clásica. Téc Pecu Méx 1993;31(3):128-136.

Aguirre BF, Aguilar OP, Martínez SA, Morilla GA. Aspectos epidemiológicos de la campaña de vacunación intensiva contra la fiebre porcina clásica en el estado de Guanajuato. 1991-1993. Téc Pecu Méx 1994;32(2):98-104.

Socci EG, Diosdado VF, Carrera SE, Macías GM, Arriaga DC, Morilla GA. Establecimiento de la técnica de RT-PCR para el diagnóstico de la fiebre porcina clásica en México. Téc Pecu Méx 2003;41(1):105-110.

Socci EG, Diosdado VF, Carrera SE, Macías GM, Arriaga DC, Morilla GA. Comparison between vaccinal and field CSF virus strains in Mexico. International Pig Veterinary Society (IPVS) Congress Ames, Iowa, USA. 2002:u 182.

Zuckermann FA. Aujeszky's disease virus: opportunities and challenges. Vet Res 2000;31(1):121–131.

Bachtold, M. Una nueva enfermedad en México, el mal de Aujeszky. Rev Tierra 1945; 1001:42-43.

Martell DM, Alcocer BR, Cerón MF, Lozano SJ, Del Valle PP, Auró AA. Aislamiento y caracterización del virus de la Enfermedad de Aujeszky o Pseudorrabia en México. Téc Pecu Méx 1971;(18):27-41.

Morilla GA, Diosdado VF, Corona BE, Soria PS, González VD. Perfiles serológicos de granjas porcinas infectadas con el virus de la enfermedad de Aujeszky. Téc Pecu Méx 1995;33(2):92-99.

Diosdado VF, Corona BE, González VD, Socci EG, Morilla GA. Perfil serológico de piaras donde se vacunaba a las cerdas contra el virus de la enfermedad de Aujeszky. Téc Pecu Méx 1995;33(2):116-120.

Diosdado VF, Córdova LD, Socci EG, González VD, Morilla GA. Sinergismo potencial entre el virus de la enfermedad de Aujeszky, Mycoplasma hyopneumoniae y Actinobacillus pleuropneumoniae en cerdos de engorda. Téc Pecu Méx 1999a;37(1):23-30.

Diosdado VF, Castro GD, Rosales OC, Calderón CA, Campomanes CA, Morilla GA. Inmunogenicidad de seis vacunas de virus inactivado contra la enfermedad de Aujeszky. Téc Pecu Méx 1999b;37(1):59-62.

Cuevas SC, Guzmán HM, De Paz VO, Colmenares VG, Hernández BE, Pérez GE. Desarrollo y evaluación de un Dot-ELISA como prueba tamiz para el diagnóstico de la enfermedad de Aujeszky en México. Téc Pecu Méx 1997;35(3):170-176.

Coba AMA, Socci EG, Zapata SL, Carrera SE, Chávez CE. Polymerase Chain Reaction for Aujeszky disease in Mexico. J Anim Vet Adv 2012;11(22):4217-4220.

Gaudreault NN, Madden DW, Wilson WC, Trujillo JD, Richt JA. African Swine Fever Virus: An emerging DNA arbovirus. Front Vet Sci 2020;(7):215.

Dixon LK, Sun H, Roberts H. African swine fever. Antiviral Res 2019;165:34-41.

Malogolovkin A, Kolbasov D. Genetic and antigenic diversity of African swine fever virus. Virus Res 2019;271:197673.

Blome S, Gabriel C, Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res 2013;173(1):122-130.

Boinas FS, Wilson AJ, Hutchings GH, Martins C, Dixon LJ. The persistence of African swine fever virus in field-infected Ornithodoros erraticus during the ASF endemic period in Portugal. PLoS One 2011;6(5):e20383.

Laddomada A, Rolesu S, Loi F, Cappai S, Oggiano A, Madrau MP, et al. Surveillance and control of African Swine Fever in free-ranging pigs in Sardinia. Transbound Emerg Dis 2019;66(3):1114-1119.

Cwynar P, Stojkov J, Wlazlak K. African Swine Fever status in Europe. Viruses 2019;11(4):310.

Gabriel C, Blome S, Malogolovkin A, Parilov S, Kolbasov D, Teifke JP. et al. Characterization of African swine fever virus Caucasus isolate in European wild boars. Emerg Infect Dis 2011;17(12):2342-2345.

O'Donnell V, Risatti GR, Holinka LG, Krug PW, Carlson J, Velazquez-Salinas L. et al. Simultaneous deletion of the 9gl and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. J Virol 2016;91(1):e01760-16.

Borca MV, Ramirez-Medina E, Silva E, Vuono E, Rai A, Pruitt S. et al. Development of a highly effective African swine fever virus vaccine by deletion of the i177l gene results in sterile immunity against the current epidemic Eurasia strain. J Virol 2020a;94(7):e02017-19.

Ramirez-Medina E, Vuono E, Pruitt S, Rai A, Silva E, Zhu J. et al. X69R is a non-essential gene that, when deleted from African swine fever, does not affect virulence in swine. Viruses 2020a;12(9):918.

Gaudreault NN, Richt JA. Subunit vaccine approaches for African Swine Fever Virus. Vaccines (Basel) 2019;7(2):56.

Bosch-Camós L, López E, Rodriguez F. African swine fever vaccines: a promising work still in progress. Porcine Health Manag 2020;(6):17.

O'Donnell V, Holinka LG, Gladue DP, Sanford B, Krug PW, Lu X, et al. African swine fever virus Georgia isolate harboring deletions of mgf360 and mgf505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J Virol 2015;89(11):6048-6056.

Borca MV, O'Donnell V, Holinka LG, Risatti GR, Ramirez-Medina E, Vuono EA, et al. Deletion of CD2-like gene from the genome of African swine fever virus strain Georgia does not attenuate virulence in swine. Sci Rep 2020b;10(1):494.

Ramirez-Medina E, Vuono EA, Rai A, Pruitt S, Silva E, Velazquez-Salinas L, et al. The C962R ORF of African swine fever strain Georgia is non-essential and not required for virulence in swine. Viruses 2020b;12(6):676.

Ramirez-Medina E, Vuono E, Pruitt S, Rai A, Silva E, Zhu J, et al. X69R is a non-essential gene that, when deleted from African swine fever, does not affect virulence in swine. Viruses 2020c;12(9):918.

Publicado

09.11.2021

Cómo citar

Rivera-Benítez, J. F., De la Luz-Armendáriz, J., Gómez-Núñez, L., Diosdado Vargas, F., Socci Escatell, G., Ramírez-Medina, E., … Zapata Moreno, M. (2021). Salud porcina: historia, retos y perspectivas. Revista Mexicana De Ciencias Pecuarias, 12, 149–185. https://doi.org/10.22319/rmcp.v12s3.5879
Metrics
Vistas/Descargas
  • Resumen
    1725
  • PDF
    938
  • PDF
    541

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a

1 2 > >>