Control y prevención de nematodosis en pequeños rumiantes: antecedentes, retos y perspectivas en México
DOI:
https://doi.org/10.22319/rmcp.v12s3.5840Palabras clave:
Nematodosis, Parásitos, Ovinos, Caprinos, Control, PrevenciónResumen
En esta revisión se presenta un panorama general de las nematodosis en pequeños rumiantes en México; así como los principales problemas que enfrentan los productores para mantener su actividad productiva. Del mismo modo, se muestra información general sobre las nematodosis gastrointestinales y sus efectos en la salud animal y en la productividad. Por otra parte, se analizan los principales retos o desafíos que se enfrenta el sector pecuario para contrarrestar estas importantes enfermedades, haciendo énfasis en las distintas estrategias de control y prevención incluyendo la quimioterapia, resistencia antihelmíntica, manejo del pastoreo, desparasitación selectiva, estrategia nutricional proteica, vacunación, selección de animales genéticamente resistentes a los nematodos, el uso de plantas y compuestos con actividad nematicida; así como los resultados más recientes en cuanto al uso de hongos nematófagos como agentes de control biológico, entre otras herramientas de control. En este trabajo se hace mención a importantes resultados obtenidos en la investigación generada en el Área de Helmintología del CENID-SAI del INIFAP y se plantea como perspectiva el establecimiento de un método integral de control de estas enfermedades a las distintas fases de desarrollo de los parásitos como “blancos” de ataque hacia dónde dirigir las estrategias de control, a los diferentes estadios evolutivos de estos parásitos, con lo que se esperan los mejores resultados contra este grupo de parásitos que tanto afectan a la salud de los rebaños y a la economía de los productores.
Descargas
Citas
IICA, Carne Ovina. Caracterización del valor nutricional de alimentos. PROCITUR, IICA, Montevideo, Uruguay; 2015:158-169. http://repiica.iica.int/docs/B3885e/B3885e.pdf.
Tuinterfaz. Se logró reducir importaciones en 74%, de 58 mil toneladas a 10 mil 379 toneladas de carne: Sagarpa. 2018. https://tuinterfaz.mx/noticias/22/10454/en-17-anos-la-produccion-de-ovino-crecio-70/.
Agnusdei GM. Calidad nutritiva del forraje. Sitio Argentino de Producción Animal. Agromercado Temático 2007, Bs. As., 136:11-17.
Díaz-Sánchez CC, Jaramillo-Villanueva JL, Vargas-López S, Delgado-Alvarado A, Hernández-Mendo O, Casiano-Ventura MA. Evaluación de la rentabilidad y competitividad de los sistemas de producción de ovinos en la región de Libres, Puebla. Rev Mex Cienc Pecu 2018;9(2):273-277.
Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA. Climate change and livestock: Impacts, adaptation, and mitigation. Clim Risk Managem 2017;16:145–163. doi:10.1016/j.crm.2017.02.001.
Craig TM. Gastrointestinal nematodes, diagnosis and control. Vet Clin North Am Food Anim Pract 2018;34(1):185–199. doi:10.1016/j.cvfa.2017.10.008.
Roeber F, Jex AR, Gasser RB. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective. Parasit Vectors 2013;6(153). doi:10.1186/1756-3305-6-153.
Mondragón-Ancelmo J, Olmedo-Juárez A, Reyes-Guerrero DE, Ramírez-Vargas G, Ariza-Román AE, López-Arellano ME, et al. Detection of gastrointestinal nematode populations resistant to albendazole and ivermectin in sheep. Animals 2019;9:775. doi:10.3390/ani9100775.
López-Ruvalcava OA, González-Garduño R, Osorio-Arce MM, Aranda-Ibañez A, Díaz-Rivera P. Cargas y especies prevalentes de nematodos gastrointestinales en ovinos de pelo destinados al abasto. Rev Mex Cienc Pecu 2013;4(2):223-234.
Schallig HDFH. Immunological responses of sheep to Haemonchus contortus. Parasitol 2000;120(7):63–72. doi:10.1017/s003118209900579x.
Selemon M. Review on Control of Haemonchus contortus in sheep and goat. J Vet Med Res 2018;5(5):1139.
Manninen S, Oksanen A. Haemonchosis in a sheep flock in North Finland [2010]. Acta Vet Scand 2010.https://doi.org/10.1186/1751-0147-52-S1-S19.
Mavrot F, Hertzberg H, Torgerson P. Effect of gastro-intestinal nematode infection on sheep performance: a systematic review and meta-analysis. Parasit Vectors 2015;8:557. https://doi.org/10.1186/s13071-015-1164-z.
Rodríguez-Vivas RI, Grisi L, Pérez-de León AA, Silva-Villela H, Torres-Acosta JJJ, Fragoso Sánchez H, et al. Potential economic impact assessment for cattle parasites in Mexico. Review. Rev Mex Cienc Pecu 2017;8(1):61-74.
Holden-Dye L, Walker RJ. Anthelmintic drugs and nematicides: studies in Caenorhabditis elegans. In: The C. elegans Research Community (ed.). WormBook; 2014. doi/10.1895/wormbook.1.143.2.
Kotze AC, Prichard RK. Antihelmintic resistence in Haemonchus contortus: History, mechanisms and diagnosis. In: Gasser RB, Von Samson-Himmelstjerna G. editors. Haemonchus contortus and haemonchosis – Past, present and future trends, London: Elsevier Ltd.; 2016:397-428.
Lanusse CE, Alvarez LI, Lifschitz AL. Gaining insights into the pharmacology of anthelmintics using Haemonchus contortus as model nematode, in: Gasser RB, Von Samson-Himmelstjerna G. editors. Haemonchus contortus and haemonchosis – Past, present and future trends, London: Elsevier Ltd; 2016:465–518.
Laing R, Gillan V, Devaney E. Ivermectin – old drug, new tricks?, Trends Parasitol 2017;33:463-472. https://doi.org/10.1016/j.pt.2017.02.004.
Mphahlele M, Molefe N, Tsotetsi-Khambule A, Oriel T. Anthelmintic resistance in livestock. In: Helminthiasis, IntechOpen 2019. http://dx.doi.org/10.5772/intechopen.87124.
Medina P, Guevara F, La OM, Ojeda N, Reyes E. Resistencia antihelmíntica en ovinos: una revisión de informes del sureste de México y alternativas disponibles para el control de nematodos gastrointestinales. Pastos y Forrajes 2014;37(3):257-263.
Encalada-Mena L, Tuyub-Solis H, Ramírez-Vargas G, Mendoza-de-Gives P, Aguilar-Marcelino L, López-Arellano ME. Phenotypic and genotypic characterisation of Haemonchus spp. and other gastrointestinal nematodes resistant to benzimidazole in infected calves from the tropical regions of Campeche State, Mexico, Vet Parasitol 2014;205:246–254. https://doi.org/10.1016/j.vetpar.2014.06.032.
González-Garduño R, Torres-Hernández G, López-Arellano ME, Mendoza-de-Gives P. Resistencia antihelmíntica de nematodos parásitos en ovinos, Rev Geogr Agrí 2012;48:63–74. https://www.redalyc.org/articulo.oa?id=75730739005.
Alonso-Díaz MA, Arnaud-Ochoa RA, Becerra-Nava R, Torres-Acosta JF, Rodriguez-Vivas RI, Quiroz-Romero RH. Frequency of cattle farms with ivermectin resistant gastrointestinal nematodes in Veracruz, Mexico. Vet Parasitol 2015;212(3-4):439-443.
Lindblom TH, Dodd AK. Xenobiotic Detoxification in the nematode Caenorhabditis elegans. J Exp Zool 2006;305(9):720-730.
Reyes-Guerrero DE, Cedillo-Borda M, Alonso-Morales RA, Alonso-Díaz MA, Olmedo-Juárez A, Mendoza-de-Gives P, et al. Comparative study of transcription profiles of the P-glycoprotein transporters of two Haemonchus contortus isolates: susceptible and resistant to ivermectin, Mol Biochem 2020;238(111281):1-7. https://doi.org/10.1016/j.molbiopara.2020.111281.
Traversa D, von Samson-Himmelstjerna G. 2016. Anthelmintic resistence in sheep gastro-intestinal strongyles in Europe. Small Rum Res 2016;135:75-80.
Floate KD, Wardhaugh KG, Boxall AB, Sherratt TN. Fecal residues of veterinary parasiticides: nontarget effects in the pasture environment. Annu Rev Entomol 2005;50:153-179.
Verdú JR, Cortez V, Martinez-Pinna J, Ortiz AJ, Lumaret JP, Lobo JM, et al. First assessment of the comparative toxicity of ivermectin and moxidectin in adult dung beetles: Sub-lethal symptoms and pre-lethal consequences. Sci Rep 2018;8(14885). doi:10.1038/s41598-018-33241-0.
Tišler T, Kožuh-Eržen N. Abamectin in the aquatic environment. Ecotoxicol 2006;15:495–502. https://doi.org/10.1007/s10646-006-0085-1.
Daeseleire E, Van Pamel E, Van Poucke C, Croubels S. Veterinary drug residues in foods. In: Schrenk D, editor. Chemical contaminants and residues in food. 1st ed. Woodhead Publishing; 2017:117–153. doi:10.1016/b978-0-08-100674-0.00006-0.
Beyene T. Veterinary drug residues in food-animal products: Its risk factors and potential effects on public health. J Vet Sci Tech 2015;07(01):doi:10.4172/2157-7579.1000285.
Moreno L, Lanusse C. Veterinary drug residues in meat-related edible tissues. In: Moreno L, Lanusse C. editors. New aspects of meat quality. Elsevier: 2017:581-603. doi:10.1016/b978-0-08-100593-4.00024-2.
Bennema SC, Vercruysse J, Morgan E, Stafford K, Hoglund J, Demeler J, et al. Epidemiology and risk factors for exposure to gastrointestinal nematodes in dairy herds in northwestern Europe. Vet Parasitol 2010;173:247–254.
Lobato V, Rath S. Reves FGR. Occurence of ivermectin in bovine milk from the Brazilian retail market. Food Addit Contam 2006;23:668-673.
Cerqueira OPM, Souza NF, França-da-Cunha A, Almeida-Picinin LC, Leite OM, Souza RM, et al. Detection of antimicrobial and anthelmintic residues in bulk tank milk from four different mesoregions of Minas Gerais State -Brazil Minas Gerais -Brasil. Arq Bras Med Vet e Zootec 2014;66(2):621-625.
Lourenco A, Fraga M, De Colli L, Moloney M, Danaher M, Jordan K. Determination of the presence of pathogens and anthelmintic drugs in raw milk and raw milk cheeses from small scale producers in Ireland. LWT 2020;109347. doi:10.1016/j.lwt.2020.109347.
Kaplan RM, Burke JM, Terril TH, Miller JE, Getz WR, Valencia E, et al. Validation of the FAMACHA© eye color chart for detecting clinical anemia in sheep and goats on farms in the southern United States. Vet Parasitol 2004;123(1-2):105-120.
Moors E, Gauly M. Is the FAMACHA© chart suitable for every breed? Correlations between FAMACHA©scores and different traits of mucosa colour in naturally parasite infected sheep breeds. Vet Parasitol 2009;166(1-2):108-111.
Harlow I. FAMACHA scoring to identify parasite risk in small ruminants. Farm & Dairy 2016. https://www.farmanddairy.com/top-stories/famacha-scoring-to-identify-parasite-risk-in-small-ruminants/316777.html.
Gonçalves-da Silva D, Martins de Menezes B, Fernandes Bettencourt A, Frantz AC, Ribeiro-Corrêa M, Ruszkowski G, et al. Método FAMACHA® como ferramenta para verificar a infestação parasitária ocasionada por Haemonchus spp. em ovinos PubVet 2017;11(10):1015-1021. doi:10.22256/pubvet.v11n10.1015-1021.
Barger IA, Siale K, Banks DJD, Le Jambre LF. Rotational grazing for control of gastrointestinal nematodes of goats in a wet tropical environment. Vet Parasitol 1994;53:109–116.
Ram-Prasad MS, Sundaram SM, Gnanaraj PT, Bandeswaran C, Harikrishnan TJ, Sivakumar T, et al. Influence of intensive rearing and continuous and rotational grazing systems of management on parasitic load of lambs. Vet World 2019;12(8):1188-1194.
Devi T, Muthuramalingam T, Tensingh-Gnanaraj P, Bino-Sundar ST, Serma-Saravana-Pandian A, Jemimah R. Rotational grazing pasture management system in sheep in Tamil Nadu to gain better bodyweight through the control of nematodes. J Anim Res 2019;9(3):495-497. doi:10.30954/2277-940X.03.2019.16.
Torres-Acosta JFJ, Sandoval-Castro CA, Hoste H, Aguilar-Caballero AJ, Cámara-Sarmiento R, Alonso-Díaz MA. Nutritional manipulation of sheep and goats for the control of gastrointestinal nematodes under hot humid and subhumid tropical conditions. Small Ruminant Res 2012;103:28-40.
Hoste H, Torres-Acosta JFJ, Quijada J, Chan-Perez I, Dakheel MM, Kommuru DS, et al. Interactions Between nutrition and infections with Haemonchus contortus and related gastrointestinal nematodes in small ruminants. Adv Parasit 2016;93:239-351. doi:10.1016/bs.apar.2016.02.025
Bricarello PA, Amarante AFT, Rocha RA, Cabral Filho SL, Huntley JF, Houdijk JGM, et al. Influence of dietary protein supply on resistance to experimental infections with Haemonchus contortus in Ile de France and Santa Ines lambs. Vet Parasitol 2005;134:99-109.
Lisonbee LD, Villalba JJ, Provenza FD, Hall JO. Tannins and self-medication: Implications for sustainable parasite control in herbivores. Behav Process 2009;82(2):184-189.
Williams AR, Ropiak HM, Fryganas C, Desrues O, Muller-Harvey I, Thamsborg SM. Assessment of the anthelmintic activity of medicinal plant extracts and purified condensed tannins against free-living and parasitic stages of Oesophagostomum dentatum. Parasit Vector 2014;19(7):518. doi: 10.1186/s13071-014-0518-2.
Zabré G, Kaboré A, Bayala B, Katiki LM, Costa-Júnior LM, Tamboura HH, et al. Comparison of the in vitro anthelmintic effects of Acacia nilotica and Acacia raddiana. Parasite 2017;24(44):1-11. https://doi.org/10.1051/parasite/2017044.
Brito DRB, Costa-Júnior LM, Garcia JL, Torres-Acosta JFJ, Louvandini H, Cutrim-Júnior JAA, et al. Supplementation with dry Mimosa caesalpiniifolia leaves can reduce the Haemonchus contortus worm burden of goats. Vet Parasitol 2018;252:47-51.
Mejia-Hernández P, Salem AZM, Elghandour MMMY, Cipriano-Salazar M, Cruz-Lagunas B, Camacho LM. Anthelmintic effects of Salix babylonica L. and Leucaena leucocephala Lam. extracts in growing lambs. Trop Anim Health Product 2013;46:173-178.
Von Son-de Fernex E, Alonso-Díaz MÁ, Mendoza-de Gives P, Valles-de la Mora B, González-Cortazar M, Zamilpa A, et al. Elucidation of Leucaena leucocephala anthelmintic-like phytochemicals and the ultrastructural damage generated to eggs of Cooperia spp. Vet Parasitol 2015;214(1-2):89–95. doi:10.1016/j.vetpar.2015.10.005.
Castillo-Mitre GF, Olmedo-Juárez A, Rojo-Rubio R, Cortázar-González M, Mendoza-de Gives P, Hernández-Beteta EE, et al. Caffeoyl and coumaroyl derivatives from Acacia cochliacantha exhibit ovicidal activity against Haemonchus contortus. J Ethnopharmacol 2017;204:125-131.
Olmedo-Juárez A, Rojo-Rubio R, Zamilpa A, Mendoza de Gives P, Arece-García J, López-Arellano ME, et al. In vitro larvicidal effect of a hydroalcoholic extract from Acacia cochliacantha leaf against ruminant parasitic nematodes. Vet Res Commun 2017;41:227-232.
Castillo-Mitre GF, Rojo-Rubio R, Olmedo-Juárez A, Mendoza de Gives P, Vázquez-Armijo JF, Zamilpa A, et al. El consumo de hojas de Acacia cochliacantha reduce la eliminación de huevos de Haemonchus contortus en heces de cabritos Boer. Rev Mex Cien Pecu 2021;12(1):138-150.
Zarza-Albarrán MA, Olmedo-Juárez A, Rojo-Rubio R, Mendoza-de Gives P, González-Cortazar M, Tapia-Maruri D, et al. Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity against Haemonchus contortus eggs and infective larvae. J Ethnopharmacol 2020;249:112402.
García-Winder LR, Goñi-Cedeño S, Olguin-Lara PA, Díaz-Salgado G, Arriaga-Jordan CM. Huizache (Acacia farnesiana) whole pods (flesh and seeds) as an alternative feed for sheep in Mexico. Trop Anim Health Prod 2009;41:1615–1621.
León-Castro Y, Olivares-Pérez J, Rojas-Hernández S, Villa-Mancera A, Valencia-Almazán MT, Hernández-Castro E, et al. Effect of three fodder trees on Haemonchus contortus control and weight variations in kid. Ecosis Recur Agrop 2015;2(5):193-201.
Olmedo-Juárez A, Briones-Robles T, Zaragoza-Bastida A, Zamilpa A, Ojeda-Ramírez D, Mendoza de Gives P, et al. Antibacterial activity of compounds isolated from Caesalpinia coriaria (Jacq) Willd against important bacteria in public health. Microb Pathog 2019;136:103660.
De Jesús-Martínez X, Olmedo-Juárez A, Olivares-Pérez J, Zamilpa A, Mendoza de Gives P, López-Arellano ME, et al. In vitro anthelmintic activity of methanolic extract from Caesalpinia coriaria J. Willd fruits against Haemonchus contortus eggs and infective larvae. Biomed Res Inter 2018;7375693. https://doi.org/10.1155/2018/7375693.
De Jesús-Martínez X, Olmedo-Juárez A, Rojas-Hernández S, Zamilpa A, Mendoza-de-Gives P, López-Arellano ME, et al. Evaluation of the hydroalcoholic extract elaborated with Caesalpinia coriaria Jacq Willd tree fruits in the control of Haemonchus contortus Rudolphi. Agrofor Syst 2020;94:1315-1321.
García-Hernández C, Rojo-Rubio R, Olmedo-Juárez A, Zamilpa A, Mendoza de Gives P, Antonio-Romo IA, et al. Galloyl derivatives from Caesalpinia coriaria exhibit in vitro ovicidal activity against cattle gastrointestinal parasitic nematodes. Exp Parasitol 2019;200:16-23.
Sánchez N, Mendoza GD, Martínez JA, Hernández PA, Camacho-Díaz LM, Lee-Rangel HA, et al. Effect of Caesalpinia coriaria fruits and soybean oil on finishing lamb performance and meat characteristics. Biomed Res Int 2018;9486258. https://doi.org/10.1155/2018/9486258.
García-Hernández C, Olmedo-Juárez A, Mendoza de Gives P, Mondragón-Ancelmo J, Rojo-Rubio R. Efecto nutracéutico del fruto de Caesalpinia coriaria (Jacq.) Willd en cabritos infectados artificialmente con Haemonchus contortus. En: Memorias de Reunión Anual de Investigación Pecuaria 2019;1:494-496.
Delgado-Nuñez EJ, Zamilpa A, González-Cortazar M, Olmedo-Juárez A, Cardoso-Taketa A, Sánchez-Mendoza E, et al. Isorhamnetin: A nematocidal flavonoid from Prosopis laevigata leaves against Haemonchus contortus eggs and larvae. Biomolecules 2020;10:773. doi:10.3390/biom10050773.
Bassetto CC, Silva MRL, Newlands GFJ, Smith WD, Ratti Júnior J, Martins CL, et al. Vaccination of grazing calves with antigens from the intestinal membranes of Haemonchus contortus: effects against natural challenge with Haemonchus placei and Haemonchus similis. Int J Parasitol 2014;44:697–702. http://dx.doi.org/10.1016/j.ijpara.2014.04.010.
Contreras-Ochoa CO, Lagunas-Martínez A, Reyes-Guerrero DE, G.A. Bautista-García G, Tello-López T, González-Garduño R, et al. Excreted and secreted products (72/60 kDa) from Haemonchus placei larvae induce in vitro peripheral blood mononuclear cell proliferation and actívate the expression of cytokines and FCεR1A receptor. Exp Parasitol 2019;206:1-7. https://doi.org/10.1016/j.exppara.2019.107755.
Bassetto CC, Amarante AFT. Vaccination of sheep and cattle against haemonchosis. J Helminthol 2015;doi:10.1017/S0022149X15000279.
González-Sánchez ME, Cuquerella M, Alunda JM. Vaccination of lambs against Haemonchus contortus with the recombinant rHc23. Effect of adjuvant and antigen dose. PLoS ONE 2018;13(3):e0193118. https://doi.org/10.1371/ journal.pone.0193118.
Tian X, Lu M, Jia C, Bu Y, Aimulajiang K, Zhang Y, et al. Haemonchus contortus transthyretin domain - containing protein (HcTTR): a promising vaccine candidate against Haemonchus contortus infection. Vet Parasitol 2020;109045. doi:10.1016/j.vetpar.2020.109045
Maza-Lopez J, Pacheco-Armenta MJ, Reyes-Guerrero DE, Olmedo-Juárez A, Olazarán-Jenkins S, et al. Immune response related to Pelibuey sheep naturally infected with gastrointestinal nematodes in a tropical region of Mexico. Vet Parasitol Regional Stud Rep 2020;21:100422 https://doi.org/10.1016/j.vprsr.2020.100422.
Preston SJM, Sandeman M, González J, Piedrafita D. Current status for gastrointestinal nematode diagnosis in small ruminants: Where are we and where are we going? J Immunol Res 2014;210350:1-12. https://doi.org/10.1155/2014/210350.
Estrada‐Reyes Z, López‐Arellano ME, Torres‐Acosta F, López‐Reyes A, Lagunas‐Martínez A, Mendoza‐de‐Gives P, et al. Cytokine and antioxidant gene profiles from peripheral blood mononuclear cells of Pelibuey lambs after Haemonchus contortus infection. Parasite Immunol 2017;39(6):e12427. https://doi.org/10.1111/pim.12427.
Estrada-Reyes ZM, Tsukahara Y, Amadeu RR, Goetsch AL, Gipson TA, Sahlu T, et al. Signatures of selection for resistance to Haemonchus contortus in sheep and goats. BMC Genomics 2019;20(735):1-14. https://doi.org/10.1186/s12864-019-6150-y.
Reyes-Guerrero DE, López-Arellano ME, González-Garduño R, Ramírez-Vargas G, Mendoza-de-Gives P, Olazarán-Jenkins S, et al. Identificación del alelo B del gen de interferón gamma asociado al rechazo de la infección por Haemonchus contortus en corderos Pelibuey. Quehacer Científico en Chiapas 2016;11(2):3-9.
Hill WG. Is continued genetic improvement of livestock sustainable? Genetics 2016;202:877–881. doi: 10.1534/genetics.115.186650.
Schultz B, Serao N, Ross JW. Genetic improvement of livestock, from conventional breeding to biotechnological approaches. In: Bazer FW, et al, editors. Animal Agriculture. USA: Academic Press 2020:393-405. https://doi.org/10.1016/B978-0-12-817052-6.00023-9.
Sallé G, Moreno C, Boitard S, Ruesche J, Tircazes-Secula A, Bouvier F, et al. Functional investigation of a QTL affecting resistance to Haemonchus contortus in sheep. Vet Res 2014;45(1):45-68.
Nordbring-Hertz B, Jansson HB, Tunlid A. Nematophagous fungi. eLS 2011. doi:10.1002/9780470015902.a0000374.pub3.
Ortíz-Pérez DO, Sánchez-Muñoz B, Nahed-Toral J, Orantes-Zebadúa MÁ, Cruz-López JL, Reyes-García ME, et al. Using Duddingtonia flagrans in calves under an organic milk farm production system in the Mexican tropics. Exp Parasitol 2017;175;74–82.
Mendoza-de-Gives P, López-Arellano ME, Aguilar-Marcelino L, Jenkins-Olazarán S, Reyes-Guerrero DE, Ramírez-Vargas G, et al. The nematophagous fungus Duddingtonia flagrans reduces the gastrointestinal parasitic nematode larvae population in faeces of orally treated calves maintained under tropical conditions. Dose/response assessment. Vet Parasitol 2018;15(263):66-72 doi:10.1016/j.vetpar.2018.10.001.
Bampidis V, Azimonti G, Bastos ML, Christensen H, Dusemund B, Kos-Durjava M, et al. Scientific Opinion on the safety and efficacy of BioWorma® (Duddingtonia flagrans NCIMB 30336) as a feed additive for all grazing animals. EFSA Journal 2020;18(7):6208. doi:10.2903/j.efsa.2020.6208.
Llerandi-Juárez RD, Mendoza-de Gives P. Resistance of chlamydospores of nematophagous fungi to the digestive processes of sheep in Mexico. J Helminthol 1998;72:155–158.
Mendoza-de Gives P, Flores-Crespo J, Herrera-Rodríguez D, Vázquez-Prats VM, Liébano-Hernández E, Ontiveros-Fernández GE. Biological control of Haemonchus contortus infective larvae in ovine faeces by administering an oral suspension of Duddingtonia flagrans chlamydospores to sheep. J Helminthol 1998;72:343–347.
Casillas-Aguilar JA, Mendoza-de-Gives P, López- Arellano ME, Liébano-Hernández E. Evaluation of multinutritional pellets containing Duddingtonia flagrans chlamydospores for the control of ovine haemonchosis. Ann N Y Acad Sci 2008;1149:161–163.
Mendoza-de Gives P, Zapata-Nieto C, Liébano-Hernández E, López-Arellano ME, Rodríguez HD, Garduño RG. Biological control of gastrointestinal parasitic nematodes using Duddingtonia flagrans in sheep under natural conditions in Mexico. Ann N Y Acad Sci 2006;1081(1):355–359. doi:10.1196/annals.1373.050.
Ribeiro-Braga F, Magri-Ferraz C, da Silva NE, de Araújo VJ. Efficiency of the Bioverm (Duddingtonia flagrans) fungal formulation to conrol in vivo and in vitro of Haemonchus contortus and Strongyloides papillosus in sheep. 3 Biotech 2020;10(62). https://doi.org/10.1007/s13205-019-2042-8.
Sallé G, Doyle SR, Cortet J. et al. The global diversity of Haemonchus contortus is shaped by human intervention and climate. Nat Commun 2019;10(4811). https://doi.org/10.1038/s41467-019-12695-4.
Chaudhry U, Redman EM, Kaplan R, Yazwinski T, Sargison N, Gilleard JS. Contrasting patterns of isotype-1 β-tubulin allelic diversity in Haemonchus contortus and Haemonchus placei in the southern USA are consistent with a model of localised emergence of benzimidazole resistance. Vet Parasitol 2020;109240. doi:10.1016/j.vetpar.2020.109240 https://doi.org/10.1016/j.vetpar.2020.109240.
Shamim A, Sajid MK, Imran M, Saqib MN. Peptides isolation from crude somatic antigens of Haemonchus contortus through SDS- PAGE. Indian J Ani Res 2017;52(914-916).doi: https://doi.org/10.18805/ijar.v0iOF.8473.
Powell K, Foster C, Evans S. Environmental dangers of veterinary antiparasitic agents. Vet Rec 2018;183(19):599–600. doi:10.1136/vr.k4690.
Githiori JB, Höglund J, Waller PJ. Ethnoveterinary plant preparations as livestock dewormers: practices, popular beliefs, pitfalls and prospects for the future. Anim Health Res Rev 2005;6(01):91–103. doi:10.1079/ahr2005099.
Minho PA, Domingues FL, Gainza AY, Figueiredo A, Boligon A, Domingues R, et al. In vitro screening of plant extract on Haemonchus contortus and Rhipicephalus (Boophilus) microplus. J Essential Oil Res 2020. doi: 10.1080/10412905.2020.1746414.
Magri-Ferraz C, Pinheiro CSL, Elias-de-Freitas SF, Oliveira-Souza RL, Tobias LF, Victor-de-Araújo J, et al. Effect of silver nanoparticles (AgNP’s) from Duddingtonia flagranson cyathostomins larvae (subfamily: cyathostominae). J Invertebr Pathol 2020;107395. doi:10.1016/j.jip.2020.107395.
Degenkolb T, Vilcinskas A. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Appl Microbiol Biot 2016;100(9):3799-3812.
Ocampo-Gutiérrez AY, Hernández-Velázquez VM, Aguilar-Marcelino L, Cardoso-Taketa A, Zamilpa A, López-Arellano ME, et al. Morphological and molecular characterization, predatory behaviour and effect of organic extracts of four nematophagous fungi from Mexico, Fungal Ecol 2021;49(101004). https://doi.org/10.1016/j.funeco.2020.101004.
Cruz-Arévalo J, Sánchez JE, González-Cortazar M, Zamilpa A, Andrade-Gallegos HR, Mendoza-de-Gives P, et al. Chemical composition of an anthelmintic fraction of Pleurotus eryngii against eggs and infective larvae (L3) of Haemonchus contortus. BioMed Res Int Hindawi 2020;2020:4138950. doi: https://doi.org/10.1155/2020/4138950.
Descargas
Publicado
Cómo citar
-
Resumen2093
-
PDF6012
-
PDF 537
Número
Sección
Licencia
Los autores/as que publiquen en la Revista Mexicana de Ciencias Pecuarias aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Pecuarias reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.