Linfadenitis caseosa: factores de virulencia, patogénesis y vacunas. Revisión
DOI:
https://doi.org/10.22319/rmcp.v12i4.5699Palabras clave:
linfadenitis caseosa, Corynebacterium pseudotuberculosis, factores de virulencia, patogénesis, vacunasResumen
La linfadenitis caseosa es una enfermedad que afecta la producción ovina y caprina a nivel mundial. El agente etiológico es una bacteria Gram positiva, intracelular facultativa denominada Corynebacterium pseudotuberculosis biovar ovis. La enfermedad puede cursar con un desarrollo cutáneo o visceral, provocando deterioro en la condición física del animal, así como pérdidas en la producción de leche y carne, decomiso de las canales, rechazo de las pieles y como consecuencia, grandes pérdidas económicas. El estudio de los factores de virulencia y los mecanismos de patogénesis han permitido comprender esta enfermedad, así como establecer las moléculas diana para el desarrollo de nuevas vacunas. Existen vacunas comerciales disponibles a nivel mundial; sin embargo, la protección conferida por éstas no ha sido eficaz en el control de la enfermedad. Actualmente el uso de nuevas tecnologías ha permitido la obtención y caracterización de proteínas con potencial inmunogénico para el desarrollado de nuevas vacunas, las cuales podrían ser una alternativa para incrementar la protección. En el presente trabajo se exponen los principales factores de virulencia de Corynebacterium pseudotuberculosis, sus implicaciones en la patogénesis y las tendencias actuales en las formulaciones vacunales.
Descargas
Citas
Dorella FA, Pacheco LG, Oliveira SC, Miyoshi A, Azevedo V. Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res 2006;37(2):201–218.
Paton MW, Rose IR, Hart RA, Sutherland SS, Mercy AR, Ellis TM, et al. New infection with Corynebacterium pseudotuberculosis reduces wool production. Aust Vet J 1994; 71:47-49.
Collett MG, Bath GF, Cameron CM. Corynebacterium pseudotuberculosis infections. In: Coetzer J, Thomson GR, Justin RC, editores. Infectious diseases of livestock with special reference to Southern Africa. Cape Town, South Africa: Oxford University Press; 1994:1387–1395.
Schreuder BE, Ter Laak EA, De Gee AL. Corynebacterium pseudotuberculosis in milk of CL affected goats. Vet Rec 1990;127(15):387.
Faeza NMN, Jesse FFA, Hambal IU, Odhah MN, Umer M, Wessam MMS, et al. Responses of testosterone hormone concentration, semen quality, and its related pro-inflammatory cytokines in bucks following Corynebacterium pseudotuberculosis and its mycolic acid infection. Trop Anim Health Prod 2019;51(7):1855-1866.
Paton MW, Walker SB, Rose IR, Watt GF. Prevalence of Caseous lymphadenitis and usage of Caseous lymphadenitis vaccines in sheep flocks. Aust Vet J 2003;81:91-95.
Windsor PA. Control of Caseous Lymphadenitis. Vet Clin Food Anim 2011;27:193–202.
Williamson LH. Caseous lymphadenitis in small ruminants. Vet Clin North Am Food Anim Pract 2001;17(2): 359-371.
Aleman MR, Spier SJ. Corynebacterium pseudotuberculosis infections. In: Smith PB, editor. Large animal internal medicine, 3rd ed. St. Louis: Mosby Co. 2002:1076–1084.
Bastos BL, Dias PRW, Dorella FA, Ribeiro D, Seyffert N. Corynebacterium pseudotuberculosis: Immunological responses in animal models and zoonotic potential. J Clin Cell Immunol 2012;S4 (005):1-15.
Gao H, Ma Y, Shao Q, Hong Q, Zheng G, Li Z. Genome sequence of Corynebacterium pseudotuberculosis strain KM01, isolated from the abscess of a goat in Kunming, China. Genome Announc 2018;6(11):e00013-18.
Windsor P. Managing control programs for ovine Caseous lymphadenitis and Paratuberculosis in Australia, and the need for persistent vaccination. Vet Med Auckl 2014;5:11-22.
de Farias AEM, Alves JRA, Alves FSF, Pinheiro RR, Faccioli MPY, Lima A MC, et al. Seroepidemiological characterization and risk factors associated with seroconversion to Corynebacterium pseudotuberculosis in goats from Northeastern Brazil. Trop Anim Health Pro 2019;51(4):745-752.
Debien E, Hélie P, Buczinski S, Leboeuf A, Bélanger D, Drolet R. Proportional mortality: A study of 152 goats submitted for necropsy from 13 goat herds in Quebec, with a special focus on Caseous lymphadenitis. Can Vet J 2013;54:581-587.
Varela GJA, Montes de Oca JR, Acosta JD, Hernández FL, Morales EV, Monroy SGH. First report of isolation and molecular characterization of the pathogenic Corynebacterium pseudotuberculosis from of sheep and goats in Mexico. Microb Pathog 2018;117:304-309.
Parise D, Parise M, Viana MVC, Muñoz BAV, Cortés-Pérez YA, Azevedo V et al. First genome sequencing and comparative analyses of Corynebacterium pseudotuberculosis strains from Mexico. Stand in Genomic Sci 2018;13(21).
Robins R. Focus on Caseous lymphadenitis. State Vet J 1991;1:7–10.
Binns SH, Bailey M, Green LE. Postal survey of ovine Caseous lymphadenitis in the United Kingdom between 1990 and 1999.Vet Record 2002;150(9):263-268.
Paton M, Rose I, Hart R, Sutherland S, Mercy A, Ellis T. Post-shearing management affects the seroincidence of Corynebacterium pseudotuberculosis infection in sheep flocks. Prev Vet Med 1996;26(3-4):275-284.
Santos LM, Stanisic D, Menezes UJ, Mendonça MA, Barral TD, Seyffert N, et al. Biogenic silver nanoparticles as a post-surgical treatment for Corynebacterium pseudotuberculosis infection in small ruminants. Front Microbiol 2019;10:824.
Stanisic D, Fregonesi NL, Barros CHN, Pontes JGM, Fulaz S, Menezes UJ, et al. NMR insights on nano silver post-surgical treatment of superficial Caseous lymphadenitis in small ruminants. RSC Advances 2018;71.
Baird G, Synge B, Dercksen D. Survey of Caseous lymphadenitis seroprevalence in British terminal sire sheep breeds. Vet Record 2004;154:505-506.
Pinto AC, de Sa PHCG, Ramos RTJ, Barbosa S, Barbosa, HPM, Ribeiro AC, et al. Differential transcriptional profile of Corynebacterium pseudotuberculosis in response to abiotic stresses. BMC Genomics 2014;15:14.
Gallardo A, Toledo RA, González-Pasayo RA, Azevedo V, Robles C, Paolicchi FA, et al. Corynebacterium pseudotuberculosis biovar ovis evaluación de la sensibilidad antibiótica in vitro. Rev Argent Microbiol 2019;51(4):334-338.
Stefanska I, Gierynska M, Rzewuska M, Binek M. Survival of Corynebacterium pseudotuberculosis within macrophages and induction of phagocytes death. Polish J Vet Sci 2010;13(1):143-149.
OIE, Organización Mundial de Sanidad Animal. Informe del grupo ad hoc de la OIE sobre las enfermedades prioritarias para las cuales las vacunas pueden reducir el uso de agentes antimicrobianos en bovinos, ovejas y cabras. Paris, 2018. http//:www.oie.int › fileadmin › SST › adhocreports › AHG.
de Pinho RB, de Oliveira Silva MT, Bezerra FSB. Vaccines for caseous lymphadenitis: up-to-date and forward-looking strategies. Appl Microbiol Biotechnol 2021;105:2287–2296.
Wattam ARJ, Davis J, Assaf R, Brettin T, Bun C, Conrad N, et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource. Nucleic Acids Res 2017;45:535-542.
Ruiz JC, D’Afonseca V, Silva A, Ali A, Pinto AC. Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One 2011;6(4):e18551.
Burkovski A. The role of corynomycolic acids in Corynebacterium-host interaction. Antonie van Leeuwenhoek 2018;111(5):717-725.
Burkovski A. Cell Envelope of Corynebacteria: Structure and Influence on Pathogenicity. ISRN Microbiol 2013;935736:11.
Muller B, de Klerk LLM, Henton MM, Lane E, Parsons S, Kotze A, et al. Mixed infections of Corynebacterium pseudotuberculosis and non-tuberculous mycobacteria in South African antelopes presenting with tuberculosis-like lesions. Vet Microbiol 2011;147:340–345.
Silva A, Schneider MPC, Cerdeira L, Barbosa MS, Ramos RTJ. Complete genome sequence of Corynebacterium pseudotuberculosis I19, a strain isolated from a cow in Israel with bovine mastitis. J Bacteriol 2011;193:323-324.
Sprake P, Gold JR. Corynebacterium pseudotuberculosis liver abscess in a mature alpaca (Lama pacos). Can Vet J 2012;53:387-390.
Lopes T, Silva A, Thiago R, Carneiro A, Dorella FA. Complete genome sequence of Corynebacterium pseudotuberculosis Strain Cp267, isolated from a Llama. J Bacteriol 2012;194:3567-3568.
Colom CA, Velarde R, Salinas J, Borge C, Garca BI, Serrano E, et al. Management of a Caseous lymphadenitis outbreak in a new Iberian ibex (Capra pyrenaica) stock reservoir. Acta Vet Scand 2014;56:83.
Oliveira M, Barroco C, Mottola C, Santos R, Lemsaddek A, Tavares L, Semedo LT. First report of Corynebacterium pseudotuberculosis from Caseous lymphadenitis lesions in Black Alentejano pig (Sus scrofa domesticus). Vet Res 2014;10:218.
Muñoz BAV, Cortés PYA, Arellano RB, Hernández GM, Hernández CR, Díaz AE. Identification of Corynebacterium pseudotuberculosis isolated from muscular abscesses in two horses: first report in Mexico. Equine Vet Educ 2016;29(8):431-435.
Borham M, Oreiby A, El GA, Al GM. Caseous Lymphadenitis in Sudanese and Somalian camels imported for meat consumption in Egypt. AJVS 2017;55(2):52-59.
Viana MVC, Figueiredo H, Ramos R, Guimares LC, Dorella FA, Azevedo V. Comparative genomic analysis between Corynebacterium pseudotuberculosis strains isolated from buffalo. PLoS ONE 2017;12(4):e0176347.
Soares SC, Silva A, Trost E, Blom J, Ramos R, Carneiro A. The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biovar ovis and equi strains. PLoS ONE 2013;8(1):e53818.
Odhah MN, Jesse FFA, Lawan A, Idris UH, Marza AD, Mahmood ZK, et al. Responses of haptoglobin and serum amyloid A in goats inoculated intradermally with C. pseudotuberculosis and mycolic acid extract immunogen. Microb Pathog 2018;117:243-246.
Hodgson ALM, Bird P, Nisbett IT. Cloning, nucleotide sequence, and expression in Escherichia coli of the phospholipase D gene from Corynebacterium pseudotuberculosis. J Bacteriol 1990;172:1256–1261.
Kolesnikov YS, Nokhrina KP, Kretynin SV, Volotovski ID, Martinec J, et al. Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. Biochem Biokhimiia 2012;77:1-14.
Dias-Lopes C, Neshich IAP, Neshich G, Ortega JM, Granier C, Chávez-Olortegui C, et al. Identification of new Sphingomyelinases D in pathogenic fungi and other pathogenic organisms. PLoS ONE 2013;8(11):e79240.
Baird GJ, Fontaine MC. Corynebacterium pseudotuberculosis and its role in ovine Caseous Lymphadenitis. J Comp Pathol 2007;137(4):179-210.
Walker J, Wilson MJ, Brandon MR. Molecular and biochemical characterization of a protective 40-kilodalton antigen from Corynebacterium pseudotuberculosis. Infect Immun 1995;63:206-211.
Shadnezhad A, Naegeli A, Collin M. CP40 from Corynebacterium pseudotuberculosis is a endo B-N- acetylglucosaminidase. BMC Microbiol 2016;63(1):206-211.
Pacheco LGC, Slade SE, Seyffert N, Santos AR, Castro TLP. A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis. BMC Microbiol 2011;11:12.
Paule BJ, Meyer R, Moura-Costa LF, Bahia RC, Carminati R, Regis LF. Three-phase partitioning as an efficient method for extraction / concentration of immunoreactive excreted-secreted proteins of Corynebacterium pseudotuberculosis. Protein Expr Purif 2004;34:311-316.
Silva WM, Dorella FA, Soares SC, Souza GHM, Seyffert N, Azevedo V, et al. A shift in the virulence potential of Corynebacterium pseudotuberculosis biovar ovis after passage in a murine host demonstrated through comparative proteomics. BMC Microbiol 2017;17(1):55.
Corrêa JI, Stocker A, Castro ST, Vale V, Brito T, Bastos B, et al. In vivo and in vitro expression of five genes involved in Corynebacterium pseudotuberculosis virulence. AMB Expr 2018;8:89.
Ibraim IC, Parise MT, Tadra MZ, de Paula TL, Wattam AR, Azevedo V, et al. Transcriptome profile of Corynebacterium pseudotuberculosis in response to iron limitation. BMC Genomics 2019;20:663.
Ibraim IC, Parise MT, Tadra MZ, de Paula TL, Wattam AR, Azevedo V, et al. Transcriptome profile of Corynebacterium pseudotuberculosis in response to iron limitation. BMC Genomics 2019;20:663.
Saıd-Salim B, Mostowy S, Kristof AS, Behr MA. Mutations in Mycobacterium tuberculosis RV0444c, the gene encoding anti-sigK, explain high level expression of mpb70 and mpb83 in Mycobacterium bovis. Mol Microbiol 2006;62:1251–1263.
Pacheco LGC, Castro TLP, Carvalho RD, Moraes PM, Dorella FA, Azevedo V, et al. A role for sigma factor σ in Corynebacterium pseudotuberculosis resistance to nitric oxide/peroxid stress. Front Microbiol 2012;3:126.
Trost E, Ott L, Schneider J, Schröder J, Jaenicke S, Goesmann A, Husemann P, et al. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene regulatory networks contributing to virulence. BMC Genomics 2010;11:728.
Costa PM, McCulloch JA, Almeida SS, Dorella FA, Fonseca CT, et al. Molecular characterization of the Corynebacterium pseudotuberculosis hsp60-hsp10 operon, and evaluation of the immune response and protective efficacy induced by hsp60 DNA vaccination in mice. BMC Res Notes 2011;4:243.
Pinto GAC, Gomes SP, Queiroz AL, Sousa T, Rodrigues L, Azevedo V, et al. Heat shock stress: Profile of differential expression in Corynebacterium pseudotuberculosis biovar Equi Gene 2018;645:124–130.
Silva WM, Seyffert SN, Santos AV, Castro TLP, Pacheco LGC, Azevedo V, et al. Identification of 11 new exoproteins in Corynebacterium pseudotuberculosis by comparative analysis of the exoproteoma. Microb Pathog 2013;1e6:1-6.
Al-Gaabary MH, Osman SA, Oreiby AF. Caseous lymphadenitis in sheep and goats: Clinical, epidemiological and preventive studies. Small Ruminant Res 2009;87:116–121.
Jesse FFA, Odhah MN, Abbad Y, Garba B, Mahmood Z, Hambali IU, et al. Responses of female reproductive hormones and histopathology in the reproductive organs and associated lymph nodes of Boer does challenged with Corynebacterium pseudotuberculosis and its immunogenic corynomycolic acid Extract. Microb Pathog 2020;139:103852.
Odhah MN, Jesse FFA, Teik CEL, Mahmood Z, Wahid HA, Mohd LMA, et al. Clinico-pathological responses and PCR detection of Corynebacterium pseudotuberculosis and its immunogenic mycolic acid extract in the vital organs of goats. Microb Pathog 2019;135:103628.
Mahmood ZKH, Jesse FF, Saharee AA, Jasni S, Yusoff R, Wahid H. Clinio-pathological changes in goats challenged with Corynebacterium peudotuberculosis and its exotoxin (PLD). Am J Anim Vet Sci 2015;10 (3):112.132.
Valdivia J. Vida intracelular de Corynebacterium pseudotuberculosis [tesis Doctorado]. España, Islas Canarias: Universidad de las Palmas de Gran Canaria. Instituto Universitario de Sanidad animal y Seguridad alimentaria; 2015.
Oliveira A, Oliveira LC, Aburjaile F, Benevides L, Tiwari S, Azevedo V, et al. Insight of Genus Corynebacterium: Ascertaining the role of pathogenic and non-pathogenic species. Front Microbiol 2017;8:1937.
Oliveira A, Teixeira P, Barh D, Barh D, Ghosh P, Azevedo V. Key amino acids in understanding evolutionary characterization of Mn/Fe-Superoxide dismutase: A phylogenetic and structural analysis of proteins from Corynebacterium and Hosts. Trends Artif Intell 2017;1(1):1-11.
Hard GC. Examination by electron microscopy of interaction between peritoneal phagocytes and Corynebacterium ovis. J Med Microbiol 1972;5:483-491.
Tashjian JJ, Campbell SG. Interaction between caprine macrophages and Corynebacterium pseudotuberculosis: an electron microscopy study. Am J Vet Res 1983;44:690-693.
Paule BJA, Azevedo V, Regis LF, Carminati R, Bahia R. Experimental Corynebacterium pseudotuberculosis primary infection in goats: kinetics of IgG and interferon-γ production, IgG avidity and antigen recognition by Western blotting. Vet Immunol Immunopathol 2003;96:129-139.
Seyffert N, Silva RF, Jardin J, Silva WM, Castro TL, Tartaglia NR, et al. Serological proteome analysis of Corynebacterium pseudotuberculosis isolated from different hosts reveals novel candidates for prophylactics to control Caseous lymphadenitis. Vet Microbiol 2014;174:255-260.
Rebouças MF, Portela RW, Lima DD, Loureiro D, Bastos BL. Corynebacterium pseudotuberculosis secreted antigen-induced specific gamma-interferon production by peripheral blood leukocytes: Potential diagnostic marker for Caseous Lymphadenitis in sheep and goats. J Vet Diag Invest 2011;23:213-220.
Fontaine MC, Baird G, Connor KM, Rudge K, Sales J, Donachie, W. Vaccination confers significant protection of sheep against infection with a virulent United Kingdom strain of Corynebacterium pseudotuberculosis. Vaccine 2006;24:5986–5996.
Stanford K, Brogden KA, McClelland LA, Kozub GC, Audibert F. The incidence of Caseous lymphadenitis in Alberta sheep and assessment of impact by vaccination with commercial and experimental vaccines. Can J Vet Res 1998;62:38-43.
Zoetis, 2020. Zoetis Spain, S.L. Avda. de Europa 20B, Parque Empresarial La Moral. https://www.zoetis.es/_locale-assets/spc/biodectin.pdf. Consultado 16 Abr, 2020.
Medrano G, Hung ACh, Alvarado AS, Li EO. Evaluación de una vacuna contra Corynebacterium pseudotuberculosis en ratones albinos. Rev Inv Vet 2003;14(1):61-67.
Braga WU. Protection in alpacas against Corynebacterium pseudotuberculosis using different bacterial components. Vet Microbiol 2007;119:297–303.
Eggleton DG, Doidge CV, Middleton HD, Minty DW. Immunisation against ovine caseous lymphadenitis: efficacy of monocomponent Corynebacterium pseudotuberculosis toxoid vaccine and combined clostridial-corynebacterial vaccines. Aust Vet J 1991;68:320421.
Syame SM, Abuelnaga ASM, Ibrahim ES, Hakim AS. Evaluation of specific and non-specific immune response of four vaccines for caseous lymphadenitis in sheep challenged. Vet World 2018;11(9):1272-1276.
Moura-Costa LF, Bahia RC, Carminati R, Vale VL, Paule BJ, et al. Evaluation of the humoral and cellular immune response to different antigens of Corynebacterium pseudotuberculosis in Canindé goats and their potential protection against Caseous lymphadenitis. Vet Immunol Immunopathol 2008;126:131-141.
Hodgson ALM, Krywult J, Corner LA, Rothel JS, Radford AJ. Rational attenuation of Corynebacterium pseudotuberculosis: Potential cheesy gland vaccine and live delivery vehicle. Infect Immun 1992;60(7):2900-2905.
Hodgson ALM, Tachedjian M, Corner LA, Radford AJ. Protection of sheep against Caseous lymphadenitis by use of a single oral dose of live recombinant Corynebacterium pseudotuberculosis. Infect and Immunol 1994;62(12):5275-5280.
Ribeiro D, Rocha FS, Leite KM, Soares SC, Silva A, Portela RW, et al. An iron-acquisition-deficient mutant of Corynebacterium pseudotuberculosis efficiently protects mice against challenge. Vet Res 2014;45:28.
Chaplin PJ, De Rose R, Boyle JS, McWaters P, Kelly J, Tennent JM, et al. Targeting improves the efficacy of a DNA vaccine against Corynebacterium pseudotuberculosis in sheep. Infect Immun 1999;67:6434–6438.
De Rose R, Tennent J, McWaters P, Chaplin PJ, Wood PR, Kimpton W, et al. Efficacy of DNA vaccination by different routes of immunisation in sheep, Vet Immunol Immunopathol 2002;90:55-63.
Brum AA, Silva AFR, Silvestre FB, Collares T, Begnine K, Kommling F, et al. Recombinant esterase from Corynebacterium pseudotuberculosis in DNA and subunit recombinant vaccines partially protects mice against challenge. J Med Microb 2017;66:635-642.
Moussa IM, Mohamed SA, Ashgan M, Hessain SA, Kabli E, Hassan AH, et al. Vaccination against Corynebacterium pseudotuberculosis infections controlling Caseous lymphadenitis (CLA) and oedematousskin disease. Saudi J Biol Sci 2016;23:718–723.
Silva MTO, Bezerra FSB, de Pinho RB, Begnini KR, Seixas FK, Collares T, et al. Association of Corynebacterium pseudotuberculosis recombinant proteins rCP09720 or rCP01850 with rPLD as immunogens in Caseous lymphadenitis immunoprophylaxis. Vaccine 2018;36(1):74-83.
Leal KS, Silva TO, Silva AFR, Brilhante FSB, Begnini K, Seixas F, et al. Recombinant M. bovis BCG expressing the PLD protein promotes survival in mice challenged with a C. pseudotuberculosis virulent strain. Vaccine 2018;36:3578–3583.
Silva JW, Droppa-Almeida D, Borsuk S, Azevedo V, Portela RW. Corynebacterium pseudotuberculosis cp09 mutant and cp40 recombinant protein partially protect mice against caseous lymphadenitis. BMC Vet Res 2014;10:965.
Droppa-Almeida D, Vivas WL, Silva KK, Rezende AF, Simionatto S. Recombinant CP40 from Corynebacterium pseudotuberculosis confers protection in mice after challenge with a virulent strain. Vaccine 2016;34(8):1091–1096.
Descargas
Publicado
Cómo citar
-
Resumen2038
-
PDF2280
-
PDF 466
Número
Sección
Licencia
Los autores/as que publiquen en la Revista Mexicana de Ciencias Pecuarias aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Pecuarias reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.