Análisis in silico de la expresión génica en células de granulosa de folículos preovulatorios en dos especies de bovinos
Resumen
Los búfalos y vacunos son dos especies de bovinos con gran parecido en su fisiología reproductiva, pero a la vez con gran diferencia en sus parámetros reproductivos. El objetivo del presente trabajo es comparar la expresión génica en células de granulosa de folículos preovulatorios de estas dos especies, basados en información disponible en la literatura, los repositorios de transcriptomas existentes y en el análisis funcional usando Ingenuity Pathway Analysis. Sólo se encontraron dos estudios independientes en los que se comparan búfalos y vacunos en cuanto a la expresión génica en células de la granulosa de folículos preovulatorios. Se analizaron los datos de expresión de forma independiente y combinada. Se encontró que, entre búfalos y vacunos, prácticamente no hay correspondencia entre los procesos evaluados, ni en las vías canónicas, ni en los reguladores corriente arriba, solamente se encuentra alguna correspondencia entre las redes y aspectos fisiológicos de cada proceso. Se concluye que cada especie tiene forma diferente de realizar el mismo proceso y que debe investigarse cada evento de acuerdo con las necesidades de los investigadores.
Palabras clave
Referencias
Buntjer JB, Otsen M, Nijman IJ, Kuiper MT, Lenstra JA. Phylogeny of bovine species based on AFLP fingerprinting. Heredity 2002;88(1):46-51.
Berdugo J, Posada I, Angel J. Need of reevaluation of the parameters of semen straws to be used in artificial insemination programs. Ital J Anim Sci 2007;6(suppl 2):619-21.
Drost M. Bubaline versus bovine reproduction. Theriogenology 2007;68(3):447-449.
Santos SS, Ferreira MA, Lima MY, Sampaio RV, Cordeiro MS, Silva TV, et al. Quantification, morphology and ultrastructure of preantral follicles of buffalo (Bubalus bubalis) foetuses. Reprod Dom Anim 2011;46(1):e17-22.
Gimenes LU, Fantinato Neto P, Arango JS, Ayres H, Baruselli PS. Follicular dynamics of Bos indicus, Bos taurus and Bubalus bubalis heifers treated with norgestomet ear implant associated or not to injectable progesterone. Anim Reprod 2009;6(1):256.
Li J, Liu J, Campanile G, Plastow G, Zhang C, Wang Z, et al. Novel insights into the genetic basis of buffalo reproductive performance. BMC Genom 2018;19(1):1-1.
Blondin P, Vigneault C, Nivet AL, Sirard MA. Improving oocyte quality in cows and heifers-What have we learned so far? Anim Reprod 2018;9(3):281-290.
Baldrighi JM, Sá Filho MF, Batista EOS, Lopes RN, Visintin JA, Baruselli PS, et al. Anti-mullerian hormone concentration and antral ovarian follicle population in Murrah heifers compared to Holstein and Gyr kept under the same management. Reprod Domest Anim 2014;49(6):1015–1020.
Nivet AL, Bunel A, Labrecque R, Belanger J, Vigneault C, Blondin P, et al. FSH withdrawal improves developmental competence of oocytes in the bovine model. Reproduction 2012;143(2):165–171.
Carvalho NA, Soares JG, Porto Filho RM, Gimenes LU, Souza DC, Nichi M, et al. Equine chorionic gonadotropin improves the efficacy of a timed artificial insemination protocol in buffalo during the nonbreeding season. Theriogenology 2013;79(3):423-428.
Khan DR, Landry DA, Fournier É, Vigneault C, Blondin P, Sirard MA. Transcriptome meta-analysis of three follicular compartments and its correlation with ovarian follicle maturity and oocyte developmental competence in cows. Physiol Genom 2016;48(8):633-643.
Fu Q, Huang Y, Wang Z, Chen F, Huang D, Lu Y, et al. Proteome profile and quantitative proteomic analysis of buffalo (Bubalus bubalis) follicular fluid during follicle development. Int J Mol Sci 2016;17(5):618.
Mondadori RG, Luque MC, Santin TR, Báo SN. Ultrastructural and morphometric characterization of buffalo (Bubalus bubalis) ovarian preantral follicles. Anim Rep Sci 2007;97(3-4):323-333.
Robert C. Microarray analysis of gene expression during early development: A cautionary overview. Reproduction 2010;140(6);787–801.
Krämer A, Green J, Pollard Jr J, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 2014;30(4):523-530.
Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006;313(5795):1929-1935.
Abatangelo L, Maglietta R, Distaso A, D'Addabbo A, Creanza TM, Mukherjee S, et al. Comparative study of gene set enrichment methods. BMC Bioinfo 2009;10(1):1-2.
Pollard Jr J, Butte AJ, Hoberman S, Joshi M, Levy J, Pappo J. A computational model to define the molecular causes of type 2 diabetes mellitus. Diab Tech Ther 2005;7(2):323-336.
Rao JU, Shah KB, Puttaiah J, Rudraiah M. Gene expression profiling of preovulatory follicle in the buffalo cow: effects of increased IGF-I concentration on periovulatory events. PloS One 2011;6(6):e20754.
Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Harland ML, Morris SE, Rodgers RJ. Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia. BMC Genom 2014;15(1):1-26.
Berdugo JA, Echeverri JJ, Tarazona AM, López A. Differences in transcriptomic data from preovulatory follicles of buffalo (Bubalus bubalis) and (Bos indicus) cattle: A meta-analysis No Title. Anim Reprod 2018;15(Suppl 1):1161.
Lussier JG, Diouf MN, Lévesque V, Sirois J, Ndiaye K. Gene expression profiling of upregulated mRNAs in granulosa cells of bovine ovulatory follicles following stimulation with hCG. Reprod Biol Endocrinol 2017;15(1):1-6.
Natesampillai S, Kerkvliet J, Leung PC, Veldhuis JD. Regulation of Kruppel-like factor 4, 9, and 13 genes and the steroidogenic genes LDLR, StAR, and CYP11A in ovarian granulosa cells. Am J Physiol-End Metab 2008;294(2):E385-91.
Castilho AC, Dalanezi FM, Franchi FF, Price CA, Ferreira JC, Trevisol E, et al. Expression of fibroblast growth factor 22 (FGF22) and Its receptor, FGFR1B, during development and regression of bovine corpus luteum. Theriogenology 2019;125:1-5.
Harlow CR, Hillier SG. Connective tissue growth factor in the ovarian paracrine system. Mol Cell End 2002;187(1-2):23-27.
Ruebel ML, Cotter M, Sims CR, Moutos DM, Badger TM, Cleves MA, et al. Obesity modulates inflammation and lipid metabolism oocyte gene expression: a single-cell transcriptome perspective. J Clin End Metab 2017;102(6):2029-38.
Lim JJ, Lima PD, Salehi R, Lee DR, Tsang BK. Regulation of androgen receptor signaling by ubiquitination during folliculogenesis and its possible dysregulation in polycystic ovarian syndrome. Scientific Reports 2017;31;7(1):1-2.
Benkhalifa M, Ferreira YJ, Chahine H, Louanjli N, Miron P, Merviel P, et al. Mitochondria: participation to infertility as source of energy and cause of senescence. Int J Biochem Cell Biol 2014;55:60-64.
Cecchino GN, Seli E, Da Motta EL, García-Velasco JA. The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reprod Biomed Online 2018;36(6):686-697.
Gasparrini B, Boccia L, Marchandise J, Di Palo R, George F, Donnay I, et al. Enrichment of in vitro maturation medium for buffalo (Bubalus bubalis) oocytes with thiol compounds: Effects of cystine on glutathione synthesis and embryo development. Theriogenology 2006;65(2):275–287.
Li J, Li Z, Liu S, Zia R, Liang A, Yang L. Transcriptome studies of granulosa cells at different stages of ovarian follicular development in buffalo. Anim Reprod Sci 2017;(187):181–192.
Sirotkin AV. The role and application of sirtuins and mTOR signaling in the control of ovarian functions. Cells 2016;5(4):42.
Fu H, Wada-Hiraike O, Hirano M, Kawamura Y, Sakurabashi A, Shirane A, et al. SIRT3 positively regulates the expression of folliculogenesis-and luteinization-related genes and progesterone secretion by manipulating oxidative stress in human luteinized granulosa cells. Endocrininol 2014;155(8):3079-3087.
Pacella-Ince L, Zander-Fox DL, Lane M. Mitochondrial SIRT5 is present in follicular cells and is altered by reduced ovarian reserve and advanced maternal age. Reprod Fert Develop 2014;26(8):1072-1083.
Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and b-oxidation. Reproduction 2014;148(1):R15-27.
Fayezi S, Ghaffari-Novin M, Darabi M, Norouzian M, Nouri M, Farzadi L, et al. Primary culture of human cumulus cells requires stearoyl-coenzyme a desaturase 1 activity for steroidogenesis and enhancing oocyte in vitro maturation. Reprod Sci 2018;(6):844-853.
Gawriluk TR, Hale AN, Flaws JA, Dillon CP, Green DR, Rucker EB. Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction 2011;141(6):759.
Yang M, Wang L, Wang X, Wang X, Yang Z LJ. IL-6 promotes FSH-induced VEGF expression through JAK/STAT3 signaling pathway in bovine granulosa cells. Cell Physiol Biochem 2017;44(1):293–302.
Martins KR, Haas CS, Ferst, JG, Rovani, MT, Goetten AL, Duggavathi R. et al. Oncostatin M and its receptors mRNA regulation in bovine granulosa and luteal cells. Theriogenology 2019;125;324–330.
Stassi AF, Baravalle ME, Belotti EM, Rey F, Gareis NC, Díaz PU, et al. Altered expression of cytokines IL-1α, IL-6, IL-8 and TNF-α in bovine follicular persistence. Theriogenology 2017;97:104-112.
Ernst EH, Grøndahl ML, Grund S, Hardy K, Heuck A, Sunde L, Franks S, et al. Dormancy and activation of human oocytes from primordial and primary follicles: molecular clues to oocyte regulation. Hum Reprod 2017;32(8):1684-1700.
El Hajj H, Khalil B, Ghandour B, Nasr R, Shahine S, Ghantous A, et al. Preclinical efficacy of the synthetic retinoid ST1926 for treating adult T-cell leukemia/lymphoma. Blood 2014;124(13):2072-2080.
Sirotkin AV, Ovcharenko D, Benčo A, Mlynček M. Protein kinases controlling PCNA and p53 expression in human ovarian cells. Funct Integr Genom 2009;(2):185-195.
Noma N, Kawashima I, Fan HY, Fujita Y, Kawai T, Tomoda Y, et al. LH-induced neuregulin 1 (NRG1) type III transcripts control granulosa cell differentiation and oocyte maturation. Mol End 2011;25(1):104-116.
Baufeld A, Vanselow J. A tissue culture model of estrogen-producing primary bovine granulosa cells. Journal of visualized experiments: JoVE 2018;(139):58208.
DOI: https://doi.org/10.22319/rmcp.v12i4.5625
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2021

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.