Mejoramiento genético de la biomasa aérea y sus componentes en alfalfa: selección familiar de medios hermanos

Autores/as

  • Milton Javier Luna-Guerrero Colegio de Postgraduados. Postgrado en Recursos Genéticos y Productividad. Carretera México-Texcoco km. 36.5, Montecillo, Texcoco, Estado de México, México.
  • Cándido López-Castañeda Colegio de Postgraduados. Postgrado en Recursos Genéticos y Productividad. Carretera México-Texcoco km. 36.5, Montecillo, Texcoco, Estado de México, México.
  • Alfonso Hernández-Garay Colegio de Postgraduados. Postgrado en Recursos Genéticos y Productividad. Carretera México-Texcoco km. 36.5, Montecillo, Texcoco, Estado de México, México.

DOI:

https://doi.org/10.22319/rmcp.v11i4.5344

Palabras clave:

Efectos genéticos maternos, Heredabilidad, Selección, Materia seca

Resumen

Se estudió la variación genética en biomasa aérea (BM) o rendimiento de materia seca (RMS) y sus componentes en 400 familias de medios hermanos (FMH) de alfalfa, derivadas de las cruzas directa (CD, San Miguel x Oaxaca) y recíproca (CR, Oaxaca x San Miguel), y las variedades originales (SM, San Miguel y O, Oaxaca). El experimento se realizó en macetas en condiciones de intemperie en Montecillo, Texcoco, Estado de México, México. Se hicieron cortes de plantas completas a 5 cm de altura, cada cinco semanas en otoño-invierno 2014-2015 y cada cuatro semanas en primavera-verano 2015. El RMS, TAC (tasa absoluta de crecimiento), EUR (eficiencia en el uso de la radiación), NT (número de tallos por planta) y AP (altura de planta) fueron 32, 31, 32, 6 y 36 % más altos en la CD, y el RMS, TAC, EUR y AP fueron 30, 28, 30 y 34 % más altos en la CR que la media de SM y O. La selección permitió identificar 13 y 17 % de FMH sobresalientes en RMS y sus componentes en las CD y CR. El RMS de las FMH sobresalientes de la CD fue 11 % mayor que el RMS de las FMH sobresalientes de la CR, indicando la presencia de efectos genéticos maternos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Busbice TH, Hill RR (Jr.), Carnahan HL. Genetics and breeding procedures. In: Hanson CH editor. Alfalfa science and technology. American Society of Agronomy. Number 15, Series Agronomy. Madison, WI, USA;1972:283-318.

Brummer EC, Bouton JH, Casler MD, McCaslin MH, Wadron BL. Grasses and legumes: Genetics and plant breeding. In: Wedin WF, Fales SL editors. Grassland: Quietness and strength for a new American agriculture. Am Soc Agron. Madison WI, USA;2009:157-171.

Annicchiarico P, Barrett B, Brummer EC, Julier B, Marshall AH. Achievements and challenges in improving temperate perennial forage legumes. Crit Rev Plant Sci 2015;34(1-3):327–380.

Lemaire G, Allirand JM. Relation entre croissance et qualité de la luzerne: interaction génotype-mode d’ exploitation. Fourr 1993;134:183-198.

Marten GC, Buxton DR, Barnes RF. Feeding value (Forage quality). In: Hanson AA, et al editors. Alfalfa and alfalfa improvement. Agronomy Monograph 29, ASA, Madison, WI. USA;1988:463-491. Doi:10.2134/agronmonogr29.c14.

Rumbaugh MD, Caddel JL, Rowe DE. Breeding and quantitative genetics. In: Hanson AA, et al editors. Alfalfa and alfalfa improvement. Agronomy Monograph 29, ASA, Madison, WI. USA;1988:777-808. Doi:10.2134/agronmonogr29.c25.

Bingham ET, Groose RW, Woodfield DR, Kidwell KK. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci 1994;34(4):823-829.

Katepa-Mutondwa FM, Christie BR, Michaels TE. An improved breeding strategy for autotetraploid alfalfa (Medicago sativa L.). Euphytica 2002;123(1):139–146.

Annicchiarico P. Alfalfa forage yield and leaf/stem ratio: narrow-sense heritability, genetic correlation and parent selection procedures. Euphytica 2015;205(2):409–420. Doi:10.1007/s10681-015-1399-y.

Li X, Brummer EC. Applied genetics and genomics in alfalfa breeding. Agron 2012;2:40–61. Doi:10.3390/agronomy2010040.

García E. Modificaciones al sistema climático de Köppen. 5a. ed, Instituto de Geografía. Serie de libros No. 6. Universidad Nacional Autónoma de México. México, DF. México;2004.

Rivas-Jacobo MA, López-Castañeda C, Hernández-Garay A, Pérez-Pérez J. Efecto de tres regímenes de cosecha en el comportamiento productivo de cinco variedades comerciales de alfalfa (Medicago sativa L.). Téc Pecu Méx 2005;43(1):79-92.

The international system of units (SI) – Conversion factors for general use. In: Butcher K, Crown L, Gentry EJ, Hockert C editors. Weights and Measures Division, Technology Services, NIST, Special Publication 1038. Department of Commerce, USA;2006.

SAS. The SAS System release 9.1 for windows. Institute Inc., Cary, North Carolina, United States. 2009.

Márquez SF. Genotecnia vegetal. Tomo I. México, DF: AGT Editor, SA; 1992.

Hartl DL, Freifelder D, Snyder LA. Cytoplasmic inheritance. In: Basic genetics. Jones and Bartlett Publishers, Inc. Portola Valley, CA, USA;1988:179-193.

Falconer DS. Introducción a la genética cuantitativa. Traducción de Fidel Márquez Sánchez, PhD. C.E.C.S.A. México, DF; 1984.

Milić D, Katić S, Boćanski J, Karagić Đ, Mikić A, Vasiljević S. Importance of progeny testing in alfalfa breeding (Medicago sativa L.). Genetika 2010;42(3):485-492.

Bakheit BR, Ali MA, Helmy AA. Effect of selection for crown diameter of forage yield and quality components in alfalfa (Medicago sativa L.). Asian J Crop Sci 2011;3(2):68-76. Doi:10.3923/ajcs.2011.68.76.

Rebetzke GJ, Richards RA, López-Castañeda C. Nuclear and maternal gene action affect selection for early vigour in wheat. In: Langridge P, et al editors. Proc. Aust Plant Breed Conf. Adelaide, South Australia; 1999:146-147.

Villegas-Aparicio Y, Hernández-Garay A, Pérez-Pérez J, López-Castañeda C, Herrera-Haro JG, Enríquez-Quiroz JF, et al. Patrones estacionales de crecimiento de dos variedades de alfalfa (Medicago sativa L.). Téc Pecu Méx 2004;42(2):145-158.

Khaiti M, Lemaire G. Dynamics of shoot and root growth of lucerne after seeding and after cutting. Europ J Agron 1992;1(4):241-247.

Brown HE, Moot DJ, Teixeira EI. Radiation use efficiency and biomass partitioning of lucerne (Medicago sativa) in a temperate climate. Europ J Agron 2006;25(4):319-327.

Aquaah G. Conventional plant breeding principles and techniques. In: Al-Khayri J, et al editors. Advances in plant breeding strategies: Breeding, biotechnology and molecular tools 2015:115-158. Doi:10.1007/978-3-319-22521-0_5.

Brewbaker JL. Agricultural genetics. New Jersey, United States of America: Prentice-Hall, Inc.; 1964.

Hill J, HC Becker, PMA Tigerstedt. Quantitative and ecological aspects of plant breeding. London, England: Chapman and Hall; 1998.

Cubero JI. Introducción a la mejora genética vegetal. 3.a ed. España: Ediciones Mundi-Prensa; 2013.

Publicado

18.12.2020

Cómo citar

Luna-Guerrero, M. J., López-Castañeda, C., & Hernández-Garay, A. (2020). Mejoramiento genético de la biomasa aérea y sus componentes en alfalfa: selección familiar de medios hermanos. Revista Mexicana De Ciencias Pecuarias, 11(4), 1126–1141. https://doi.org/10.22319/rmcp.v11i4.5344
Metrics
Vistas/Descargas
  • Resumen
    840
  • PDF
    498
  • PDF
    174
  • Texto completo
    75

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a