Identification of candidate genes for reproductive traits in cattle using a functional interaction network approach


  • Francisco Alejandro Paredes-Sánchez CENTRO BIOTECNOLOGÍA GENÓMICA -IPN
  • Daniel Trejo-Martínez Instituto Politécnico Nacional. UPIIZ-, Zacatecas, México.
  • Elsa Verónica Herrera-Mayorga Universidad Autónoma de Tamaulipas IBI. UAMM. Mante, México
  • Williams Arellano-Vera Instituto Politécnico Nacional. Centro de Biotecnología Genómica. Laboratorio de Biotecnología Animal. Blvd. Del Maestro esq. Elías Piña. Col. Narciso Mendoza s/n. Cd. Reynosa, Tam. México.
  • Felipe Rodríguez Almeida Universidad Autónoma de Chihuahua. Facultad de Zootecnia y Ecología. Chihuahua, México.
  • Ana María Sifuentes-Rincón Instituto Politécnico Nacional. Centro de Biotecnología Genómica. Laboratorio de Biotecnología Animal. Blvd. Del Maestro esq. Elías Piña. Col. Narciso Mendoza s/n. Cd. Reynosa, Tam. México.


Palabras clave:

bovine, molecular markers, semen quality, ubiquitylation


Reproduction is a key element in cattle production systems. Systems biology approaches, including those involving gene networks, have been applied to genetic dissection complex phenotypes in cattle. A set of 385 genes associated with reproductive traits in cattle were included in a protein-protein network analysis to identify and prioritize candidate genes related to phenotypic differences in cattle reproduction. Genes belonging to the ubiquitin family - Ubiquitin C (Ubc, Gene ID: 444874) and Ubiquitin B (Ubb, Gene ID: 281370) -had the highest probability of being associated with these traits in cattle. Both proteins were identified as important hubs in a protein-protein interaction network, each having 3,775 interactions of 3,856 possible. Resequencing of the Ubb gene coding region to evaluate the presence of SNPs in a discovery population identified the G/T (rs110366695) transversion. This causes emergence of a stop codon and a protein truncated by 287 aa. The allelic frequency distributions found in two beef cattle breeds highlight the promise of further research into the effects of protein truncation and the potential of these proteins as molecular markers for semen quality.


Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ana María Sifuentes-Rincón, Instituto Politécnico Nacional. Centro de Biotecnología Genómica. Laboratorio de Biotecnología Animal. Blvd. Del Maestro esq. Elías Piña. Col. Narciso Mendoza s/n. Cd. Reynosa, Tam. México.




Jiang Z, Ott TL. Reproductive genomics in domestic animals. Iowa, USA: Wiley-Blackwell; 2010.

Lee T, Hwang S, Kim CY, Shim H, Kim H, Ronald P, et al. WheatNet: A genome-scale functional network for hexaploid bread wheat, Triticum aestivum. Mol Plant 2017;(8):1133-1136.

Lim D, Kim NK, Park HS, Lee SH, Cho YM, Oh SJ, et al. Identification of candidate genes related to bovine marbling using protein-protein interaction networks. Int J Biol Sci 2011;(7):992-1002.

Hulsegge I, Woelders H, Smits M, Schokker D, Jiang L, Sørensen P. Prioritization of candidate genes for cattle reproductive traits, based on protein-protein interactions, gene expression, and text-mining. Physiol Genomics 2013;(10):400-406.

Paredes-Sánchez FA, Sifuentes-Rincón AM, Segura CA, García PCA, Parra BGM, Ambriz MP. Associations of SNPs located at candidate genes to bovine growth traits, prioritized with an interaction networks construction approach. BMC Genet 2015;(91):1-12.

Han Y, Peñagaricano F. Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genet 2016;(1):143.

Garza-Brenner E, Sifuentes-Rincón AM, Randel RD, Paredes-Sánchez FA, Parra-Bracamonte GM, et al. Association of SNPs in dopamine and serotonin pathway genes and their interacting genes with temperament traits in Charolais cows. J Appl Genet 2016;(3):1-9.

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;(21):2947-2848.

Raymond M, Rousset F. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J Heredity 1995;(3):248-249.

Cory AT, Price CA, Lefebvre R, Palin MF. Identification of single nucleotide polymorphisms in the bovine follicle-stimulating hormone receptor and effects of genotypes on superovulatory response traits. Anim Genet 2013;(2):197-201.

Hoelker M, Rings F, Lund Q, Ghanem N, Phatsara C, Griese J. Effect of the microenvironment and embryo density on developmental characteristics and gene expression profile of bovine preimplantative embryos cultured in vitro. Reproduction 2009;(3):415-425.

Cochran SD, Cole JB, Null DJ, Hansen PJ. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle. BMC Genet 2013;(49):14-49.

Fair T, Carter F, Park S, Evans AC, Lonergan P. Global gene expression analysis during bovine oocyte in vitro maturation. Theriogenology 2007;(68):91-97.

Salilew WD, Hölker M, Rings F, Ghanem N, Ulas-Cinar M, Peippo J, et al. Bovine pretransfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer. Physiol Genomics 2010;(2):201-218.

Loureiro B, Oliveira LJ, Favoreto MG, Hansen PJ. Colony-stimulating factor 2 inhibits induction of apoptosis in the bovine preimplantation embryo. Am J Reprod Immunol 2011;(65):578-588.

Cerri RL, Thompson IM, Kim IH, Ealy AD, Hansen PJ, Staples CR, et al. Effects of lactation and pregnancy on gene expression of endometrium of Holstein cows at day 17 of the estrous cycle or pregnancy. J Dairy Sci 2012;(10):5657-575.

Fayad T, Lévesque V, Sirois J, Silversides DW, Lussier JG. Gene expression profiling of differentially expressed genes in granulosa cells of bovine dominant follicles using suppression subtractive hybridization. Biol Reprod 2004;(2):523-533.

Misirlioglu M, Page GP, Sagirkaya H, Kaya A, Parrish JJ, First NL, et al. Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. Proc Natl Acad Sci 2006;(50):18905-18910.

Cochran SD, Cole JB, Null DJ, Hansen PJ. Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle. Biol Reprod 2013;(3):1-7.

Bonilla AQ, Oliveira LJ, Ozawa M, Newsom EM, Lucy MC, Hansen PJ. Developmental changes in thermoprotective actions of insulin-like growth factor-1 on the preimplantation bovine embryo. Mol Cell Endocrinol 2011;(1-2):170-179.

Mamo S, Sargent CA, Affara NA, Tesfaye D, El-Halawany N, Wimmers K, Gilles M, Schellander K, Ponsuksili S. Transcript profiles of some developmentally important genes detected in bovine oocytes and in vitro-produced blastocysts using RNA amplification and cDNA microarrays. Reprod Domest Anim 2006;(6):527-534.

Graber M, Kohler S, Kaufmann T, Doherr MG, Bruckmaier RM, van Dorland HA. A field study on characteristics and diversity of gene expression in the liver of dairy cows during the transition period. J Dairy Sci 2010;(1):5200-5215.

Bauersachs S, Rehfeld S, Ulbrich SE, Mallok S, Prelle K, Wenigerkind H, et al. Monitoring gene expression changes in bovine oviduct epithelial cells during the oestrous cycle. J Mol Endocrinol 2004;(2):449-466.

Assidi M, Dieleman SJ, Sirard MA. Cumulus cell gene expression following the LH surge in bovine preovulatory follicles: potential early markers of oocyte competence. Reproduction 2010;(6):835-852.

Salhab M, Tosca L, Cabau C, Papillier P, Perreau C, Dupont J, et al. Kinetics of gene expression and signaling in bovine cumulus cells throughout IVM in different mediums in relation to oocyte developmental competence, cumulus apoptosis and progesterone secretion. Theriogenology 2011;(1):90-104.

Khatib H, Monson RL, Huang W, Khatib R, Schutzkus V, Khateeb H, et al. Short communication: Validation of in vitro fertility genes in a Holstein bull population. J Dairy Sci 2010;(93):2244-2249.

Rosenkrans Jr C, Banks A, Reiter S, Looper M. Calving traits of crossbred Brahman cows are associated with Heat Shock Protein 70 genetic polymorphisms. Anim Reprod Sci 2010;(3-4):178-182.

Pimentel EC, Bauersachs S, Tietze M, Simianer H, Tetens J, Thaller G, et al. Exploration of relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived by expression profiling. Anim Genet 2011;(3):251-262.

Gad A, Besenfelder U, Rings F, Ghanem N, Salilew-Wondim D, Hossain MM, et al. Effect of reproductive tract environment following controlled ovarian hyperstimulation treatment on embryo development and global transcriptome profile of blastocysts: implications for animal breeding and human assisted reproduction. Hum Reprod 2011;(7):1693-1707.

Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K, et al. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 2009;(7):665-677.

Jousan FD, Hansen PJ. Insulin-like growth factor-I promotes resistance of bovine preimplantation embryos to heat shock through actions independent of its anti-apoptotic actions requiring PI3K signaling. Mol Reprod Dev 2007;(2):189-196.

Mani O, Körner M, Sorensen MT, Sejrsen K, Wotzkow C, Ontsouka CE, et al. Expression, localization, and functional model of cholesterol transporters in lactating and nonlactating mammary tissues of murine, bovine, and human origin. Am J Physiol Regul Integr Comp Physiol 2010;(2):642-654.

Fortes MR, Reverter A, Nagaraj SH, Zhang Y, Jonsson NN, Barris W, et al. A single nucleotide polymorphism-derived regulatory gene network underlying puberty in 2 tropical breeds of beef cattle. J Anim Sci. 2011;(6):1669-1683.

Bebington C, Doherty FJ, Fleming SD. The possible biological and reproductive functions of ubiquitin. Hum Reprod Update 2001;(1):102-111.

Clark A, Nomura A, Mohanty S, Firtel RA. A ubiquitin-conjuganting enzyme is essential for developmental transitions in Dictiostelium. Mol Biol Cell 1997;(8):1989-2002.

Zhen M, Schein JE, Baille DL, Peter E, Candido M. An essential ubiquitin conjugating enzyme with tissue and developmental specificity in the nematode C. elegans. EMBO J 1996;(15):3229-3237

Muratori M, Marchiani S, Forti G, Baldi E. Sperm ubiquitination positively correlates to normal morphology in human semen. Hum Reprod 2005;(20):1035-1043.

Sutovsky P, Geary T, Baska KM, Manandhar G, Feng D, Lovercamp KW, Sutovsky M. Ubiquitin as an objective marker of semen quality and fertility in bulls. Proc Nebraska Appl Reprod Strat in Beef Cattle 2004;185-199.

Rodríguez-Lozano I, Ávalos-Rodríguez A, Castillo-Juárez H, Borderas-Tordesillas F, Roa-Vidal JJ, Rosales-Torres AM. Percentage of ubiquinated spermatozoa does not correlate with fertilizing capacity of thawed bovine semen. Reprod Dom Anim 2013;(1):27-31.

Sutovsky P, Terrada Y, Schatten G. Ubiquitin-based sperm assay for the diagnosis of male factor infertility. Hum Reprod 2001;(2):250–258.

Sutovsky P, Hauser R, Sutovsky M. Increased levels of sperm ubiquitin correlate with semen quality in men from an andrology laboratory clinic population. Hum Reprod 2004;(3):628–638.



Cómo citar

Paredes-Sánchez, F. A., Trejo-Martínez, D., Herrera-Mayorga, E. V., Arellano-Vera, W., Rodríguez Almeida, F., & Sifuentes-Rincón, A. M. (2020). Identification of candidate genes for reproductive traits in cattle using a functional interaction network approach. Revista Mexicana De Ciencias Pecuarias, 11(3), 894–904.
  • Resumen
  • PDF
  • PDF
  • Full text



Notas de investigación


Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a