Herramientas moleculares utilizadas para el análisis metagenómico. Revisión
DOI:
https://doi.org/10.22319/rmcp.v11i4.5202Palabras clave:
Marcador molecular, Gen 16S rRNA, Metagenómica, Diversidad microbiana, Secuenciación de alto rendimientoResumen
La metagenómica utiliza técnicas de biología molecular para analizar la diversidad de los genomas microbianos (metagenomas). La diversidad de los metagenomas se ha analizado mediante marcadores moleculares para clasificar bacterias y arqueas en grupos taxonómicos a nivel de género. Entre los marcadores moleculares más utilizados se encuentran los genes ribosomales, genes que codifican subunidades del citocromo C y algunos genes constitutivos (gyrB, rpoB, rpoD, recA, atpD, infB, groEL, pmoA, sodA). El marcador más utilizado es el gen 16S rRNA para clasificar bacterias y arqueas de muestras metagenómicas, aunque no permite clasificar de forma adecuada algunas secuencias. Sin embargo, con la secuenciación del gen completo 16S rRNA se identifican todas las secuencias de las regiones hipervariables, por lo que se ha logrado clasificar hasta nivel taxonómico de especie con este marcador molecular. La secuenciación de próxima generación, también llamada secuenciación masiva o de alto rendimiento ha ayudado a describir metagenomas complejos como los de muestras ambientales, con importancia ecológica, así como metagenomas que crecen en ambientes extremos. También han ayudado a estudios relacionados con sanidad animal y en humanos, y en el ámbito agroalimentario. Específicamente, tanto el uso del marcador molecular 16S rRNA como la secuenciación de alta eficiencia combinadas con el uso de las herramientas bioinformáticas para el análisis metagenómico se han usado para describir el metagenoma ruminal, una comunidad microbiana de gran importancia debido a que está involucrada en la producción animal de carne y leche. A pesar de los muchos estudios que se han realizado en este campo, aún faltan microorganismos por descubrir y caracterizar.Descargas
Citas
Li W, Huan X, Zhou Y, Ma Q, Chen Y. Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from Golden Takin (Budorcas taxicolor Bedfordi). Biochem Biophys Res Commun 2009;383(4):397-400.
Sadet S, Martin C, Meunier B, Morgavi DP. PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium. Animal 2007;1(7):939-944.
Hess M, Sczyrba A, Egan R, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 2011;331(6016):463-467.
Li RW, Connor EE, Li C, Ransom L, Baldwin VI, Sparks ME. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol 2012;14(1):129-139.
Pinloche E, McEwan N, Marden JP, Bayourthe C, Auclair E, Newbold CJ. The Effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS One 2013;8(7):e67824.
Kumar M, Shrivastava N, Teotia P, et al. Omics: Tools for assessing environmental microbial diversity and composition. In: Varma A. SA, ed. Modern tools and techniques to understand microbes. Springer, Cham; 2017:273-283.
Marshall IPG, Karst SM, Nielsen PH, Jørgensen BB. Metagenomes from deep Baltic Sea sediments reveal how past and present environmental conditions determine microbial community composition. Mar Genomics 2018;37:58-68.
Simon C, Daniel R. Metagenomic analyses: Past and future trends. Appl Environ Microbiol 2011;77(4):1153-1161.
Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P. Metagenomic gene discovery: Past, present and future. Trends Biotechnol 2005;23(6):321-329.
Streit WR, Schmitz RA. Metagenomics - The key to the uncultured microbes. Curr Opin Microbiol 2004;7(5):492-498.
Pacheco-Arjona JR, Sandoval-Castro CA. Tecnologías de secuenciación del metagenoma del rumen. Trop Subtrop Agroecosyt 2018;21:587-598.
Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques 2004;36:808-812.
Singh B, Bhat TK, Kurade NP, Sharma OP. Metagenomics in animal gastrointestinal ecosystem: a microbiological and biotechnological perspective. Indian J Microbiol 2008;48:216-227.
Venter JC, Remington K, Heidelberg JF, et al. Environmental genome shotgun sequencing of the Sargasso sea. Science 2004;304(5667):66-74.
Escobar-Zepeda A, Vera-Ponce de León A, Sanchez-Flores A. The road to metagenomics: From microbiology to DNA sequencing technologies and bioinformatics. Front Genet 2015;6:348.
Khlestkina EK. Molecular markers in genetic studies and breeding. Russ J Genet Appl Res 2014;4(3):236-244.
Patwardhan A, Samit R, Roy A. Molecular markers in phylogenetic studies-A Review. J Phylogenetics Evol Biol 2014;02(02).
D´Amore R, Ijaz UZ, Schirmer M, Kenny JG, Gregory R, Darby AC, et al. A comprenhensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genomics. 2016;17:55.
Clarridge JE. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 2004;17(4):840-862.
Wu S, Baldwin RL, Li W, Li C, Connor EE, Li RW. The bacterial community composition of the bovine rumen detected using pyrosequencing of 16S rRNA genes. Metagenomics 2012;1:235571.
Valenzuela-Gonzalez F, Martínez-Porchas M, Villalpando-Canchola E, Vargas-Albores F. Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken). J Microbiol Methods 2016;122:38-42.
Ludwig W, Schleifer KH. Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev 1994;15(2-3):155-173.
Osorio CR, Collins MD, Romalde JL, Toranzo AE. Variation in 16S-23S rRNA intergenic spacer regions in Photobacterium damsalae: a Mosaic-Like structure. Appl Environ Microbiol 2005;71(2):636-645.
Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015;38(4):237-245.
Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, Kjelleberg S. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 2007;73(1):278-288.
Sánchez-Herrera K, Sandoval H, Mouniee D, et al. Molecular identification of Nocardia species using the sodA gene: Identificación molecular de especies de Nocardia utilizando el gen sodA. New Microbes New Infect 2017;19:96-116.
Dumont MG. Primers: Functional marker genes for Methylotrophs and Methanotrophs. In: McGenity T, Timmis KNB, editors. Hydrocarbon and lipid microbiology protocols - Springer Protocols Handbooks. Berlin: Springer Protocols Handbooks; 2014.
Kolb S, Stacheter A. Prerequisites for amplicon pyrosequencing of microbial methanol utilizers in the environment. Front Microbiol 2013;4(SEP):1-12.
Logares R, Sunagawa S, Salazar G, Cornejo-Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16(9):2659-2671.
Zinicola M, Higgins H, Lima S, Machado V, Guard C, Bicalho R. Shotgun metagenomics sequencing reveals functional genes and microbiome associated with bovine digital dermatitis. PLoS ONE 2015;10(7)e0133674.
Ross EM, Moate PJ, Bath CR, Davidson SE, Sawbridge TI, Guthridge KM, Cocks BG, Hayes BJ. High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing. BMC Genetics 2012;13:53.
Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 2016;469:967-977.
Meyer F, Paarmann D, D`Souza M, Olson R, Glass EM, Kubal M, et al. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 2008;9:386.
Schloss PD, Westcott S. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75(23):7537-7541.
Kuczynski J, Stombauhg, Walters WA, Gonzalez A, Caporaso JG, Knight R. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics 2011;10:7.
Ahmed SA, Lo CC, Li PE, Davenport KW, Chain PSG. From raw reads to trees: Whole genome SNP phylogenetics across the tree of life. bioRxiv 2015:032250.
Mori H, Maruyama T, Yano M, Yamada T, Kurokawa K. VITCOMIC2: visualization tool for the phylogenetic composition of microbial communites based on 16S rRNA gene amplicons and metagenomic shotgun sequencing. BMC Systems Biol 2018;12(2):30.
Miao J, Han N, Qiang Y, Zhang T, Li X, Zhang W. 16SPIP: a comprehensive analysis pipeline for rapid pathogen detection in clinical samples based on 16S metagenomic sequencing. BMC Bioinformatics 2017;18(16):568.
Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013;31(9):814-82.
Human Microbiome Project Consortium. A framework for human microbiome research. Nature 2012;13;486(7402):215-21. doi: 10.1038/nature11209.
Basak P, Pramanik A, Sengupta S, Nag S, Bhattacharyya A, Roy D, Pattanayak R, Ghosh A, Chattopadhyay D, Bhattachryya M. Bacterial diversity assessment of pristine mangrove microbial community from Dhulibhashani, Sundarbans using 16S rRNA gene tag sequencing. Genomics Data 2016;7:76-78.
Nair HP, Puthusseri RM, Vincent H, Bhat SG. 16S rDNA-based bacterial diversity analysis of Arabian Sea sediments: A metagenomic approach. Ecol Genet Genomics 2017;3(5):47-51.
Chan CS, Chan KG, Tay YL, Chua TH, Goh KM. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 2015;6:177.
Thiel V, Wood JM, Olsen MT, Tank M, Katt CG, Ward DM, Bryant DA. The dark side of the mushroom spring microbial mat: Life in the shadow of chlorophototrophs. I. Microbial diversity based on 16S rRNA gene amplicons and metagenomic sequencing. Front Microbiol 2016;7:919.
Kayani MR, Doyle SM, Sangwan N, Wang G, Gilbert JA, Christner BC, Zhu TF. Metagenomic analysis of basal ice from an Alaskan glacier. Microbiome 2018;6:123.
Païsse S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, Lelouvier B. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 2016;56:1138-1147.
Salazar JK, Carstens CK, Ramachandran P, Shazer AG, Narula SS, Reed E, Ottesen A, Schill KM. Metagenomics of pasteurized and unpasteurized gouda cheese using targeted 16S rDNA sequencing. BMC Microbiology 2018;18:189.
Mohd-Shaufi MA, Sieo CC, Chong CW, Gan HM, Ho YW. Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses. Gut Pathog 2015;7:4
Pan X, Xue F, Nan X, Tang Z, Wang K, Beckers Y, Jiang L, Xiong B. Illumina sequencing approach to characterize thiamine metabolism related bacteria and the impacts of thiamine supplementation on ruminal microbiota in dairy cows fed high-grain diets. Front Microbiol 2017;8:1818.
Wakchaure R, Ganguly S, Para PA, Praveen PK, Qadri K. Molecular markers and their applications in farm animals : A Review. Int J Recent Biotechnol 2015;3(January 2016):23-29.
Kumar A, Tomar SS, Kumar A, Singh J. Importance of molecular markers in livestock improvement: a review. Int J Agric Res Innov Technol 2017;5(4):614-621.
Lang T, Li G, Yu Z, Ma J, Chen Q, Yang E, Yang Z. Genome-wide distribution of novel Ta-3A1 mini-satellite repeats and its use for chromosome identification in wheat and related species. Agronomy 2019;9(2):60.
Beuzen ND, Stear MJ, Chang KC. Molecular markers and their use in animal breeding. Vet J 2000;160(1):42-52.
Vignal A, Milan D, San Cristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 2002;34(2002):275-305.
Duran C, Singhania R, Raman H, Batley J, Edwards D. Predicting polymorphic EST-SSRs in silico. Mol Ecol Resour 2013;13(3):538-545.
Yu H, Xie W, Wang J, et al. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 2011;6(3).
Wilkinson TJ, Huws SA, Edwards JE, Kingston-Smith A, Siu Ting K, et al. CowPI: a rumen microbiome focused version of the PICRUSt functional inference software. Frontiers in Microbiol 2018;(9):1095.
Wood DE, Salzberg SL. Kraken: ultrafast metagenomics sequence classification using exact alignments. Genome Biology. 2014;15(3):R46.
Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nature communications 2016;7:11257.
Descargas
Publicado
Cómo citar
-
Resumen3091
-
PDF1620
-
PDF 269
-
Texto completo369
Número
Sección
Licencia
Los autores/as que publiquen en la Revista Mexicana de Ciencias Pecuarias aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Pecuarias reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.