Design of an electrochemical prototype to determine relative NaCl content and its application in fresh cheeses

Autores/as

  • Rubén Cázares-Gallegos Universidad Autónoma de Nuevo León Facultad de Agronomía
  • Juan Antonio Vidales-Contreras Universidad Autónoma de Nuevo Leon. Facultad de Agronomía. Francisco Villa s/n, Ex Hacienda El Canada, 66050. Escobedo, Nuevo León, México.
  • Alejandro Isabel Luna-Maldonado Universidad Autónoma de Nuevo Leon. Facultad de Agronomía. Francisco Villa s/n, Ex Hacienda El Canada, 66050. Escobedo, Nuevo León, México.
  • Michael E. Hume Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, USDA, TX, USA.
  • Ramón Silva-Vázquez Instituto Tecnológico de Parral, Chihuahua, México.
  • Armando Quintero-Ramos Universidad Autónoma de Chihuahua. Facultad de Ciencias Químicas. Chih, México.
  • Gerardo Mendéz-Zamora Universidad Autónoma de Nuevo Leon. Facultad de Agronomía. Francisco Villa s/n, Ex Hacienda El Canada, 66050. Escobedo, Nuevo León, México.

DOI:

https://doi.org/10.22319/rmcp.v10i1.4540

Palabras clave:

Adulteration, Cheese, Electrical potential, NaCl content, Quality assurance

Resumen

An electrochemical prototype (ECP) was developmed and evaluated to determine NaCl electrical variables [volt (V), ampere (A), resistance (R) and power (P)] and its use in fresh cheeses. The ECP circuit consisted of two electrodes, an aluminum (anode) and a copper (cathode). The experimental parameters established in the ECP were distance between electrodes and the presence of a resistor. Seven treatment solutions were examined at 0, 2, 4, 6, 8, 10 and 12 g of NaCl/100 mL of water. Cheeses evaluated were a commercial cheese (Control) and a commercial light cheese. Treatment influenced (P<0.05) the electrical variables in NaCl solutions and cheeses. Regression analysis showed that the best fit was a quadratic model for the ECP. Prototype results showed that at higher NaCl concentrations, voltage and resistance decreased, while amperage and power increased.

 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Rubén Cázares-Gallegos, Universidad Autónoma de Nuevo León Facultad de Agronomía

Profesor-Investigador

Ingeniería en Industrias Alimentarias

Facultad de Agronomía

Universidad Autónoma de Nuevo León

Citas

Sadat A, Mustajab P, Khan IA. Determining the adulteration of natural milk with synthetic milk using ac conductance measurement. J Food Eng 2006;77(3):472-477.

Mabrook MF, Petty MC. Application of electrical admittance measurements to the quality control of milk. Sensor Actuat B-Chem 2002;B84(2-3):136-141.

Mabrook MF, Petty MC. A novel technique for the detection of added water to full fat milk using single frequency admittance measurements. Sensor Actuat B-Chem 2003a;B96(1-2):215-218.

Mabrook MF, Petty MC. Effect of composition on the electrical conductance of milk. J Food Eng 2003b;60(3):321-325.

Żywica R, Banach JK, Kiełczewska K. An attempt of applying the electrical properties for the evaluation of milk fat content of raw milk. J Food Eng 2012;111(2):420-424.

Velázquez-Varela J, Fito PJ, Castro-Giráldez M. Thermodynamic analysis of salting cheese process. J Food Eng 2014;130:36-44.

Maruyama Y, Numamoto Y, Saito H, Kita R, Shinyashiki N, Yagihara S, Fukuzaki M. Complementary analyses of fractal and dynamic water structures in protein-water mixtures and cheeses. Colloid Surface A 2014;440:42-48.

Lin Teng Shee F, Angers P, Bazinet L. Relationship between electrical conductivity and demineralization rate during electroacidification of cheddar cheese whey. J Membrane Sci 2005;262(1-2):100-106.

Figura LO, Teixeira AA. Food physics. Physical properties-measurement and applications. Berlin Heidelberg, Germany: Springer-Verlag; 2007.

Lewis MJ. Physical properties of foods and food processing systems. Berlin Heidelberg, Germany: Springer-Verlag; 1990.

Gustafson RJ, Morgan MT. Fundamentals of electricity for agriculture. American Society of Agricultural and Biological Engineers. St. Joseph, MI. 2004.

Chang R. Chemistry. New York, USA: Mc Graw Hill; 2010.

Atkins P, de Paula J. Physical Chemistry. Oxford, New York: W.H. Freeman and Company; 2006.

INEGI. Instituto Nacional de Estadística y Geografía. México en Cifras: Información Nacional por Entidad Federativa y Municipios. http://www.beta.inegi.org.mx/app/areasgeograficas/. Consultado: Feb 12, 2017.

Harris DC. Quantitative chemical analysis. Oxford, New York: W.H. Freeman and Company; 2007.

SAS. Statistical Analysis System. Version 9.1.3. SAS Institute Inc. Cary, North Carolina, 2006.

Montgomery DC. Design and analysis of experiments. Danvers MA: John Wiley & Sons, Inc; 2013.

Muske KR, Nigh CW, Weinstein RD. A lemon cell battery for high-power applications. J Chem Educ 2007;84(4):635-638.

Kelter PB, Carr JD, Johnson T. The chemical and educational appeal of the orange juice clock. J Chem Educ1996;73(12):1123-1127.

Publicado

08.01.2019

Cómo citar

Cázares-Gallegos, R., Vidales-Contreras, J. A., Luna-Maldonado, A. I., Hume, M. E., Silva-Vázquez, R., Quintero-Ramos, A., & Mendéz-Zamora, G. (2019). Design of an electrochemical prototype to determine relative NaCl content and its application in fresh cheeses. Revista Mexicana De Ciencias Pecuarias, 10(1), 161–171. https://doi.org/10.22319/rmcp.v10i1.4540
Metrics
Vistas/Descargas
  • Resumen
    1230
  • PDF
    284
  • PDF
    143
  • Texto Completo
    166

Número

Sección

Notas de investigación

Métrica

Artículos más leídos del mismo autor/a