La suplementación con DL-ácido málico mejora las características de la canal de borregos Pelibuey en finalización
DOI:
https://doi.org/10.22319/rmcp.v10i2.4454Palabras clave:
Acido málico, Comportamiento animal, Características de la canalResumen
El objetivo del presente estudio fue evaluar el efecto de la adición de DL-ácido málico en dietas de borregos Pelibuey en finalización sobre ganancia diaria de peso, características de la canal y componentes que no son parte de la canal. Se utilizaron 16 corderos machos de 27 ± 1.92 kg de peso vivo durante los 48 d de la prueba de alimentación. Los animales fueron alimentados con una dieta alta en energía que contenía rastrojo de maíz, como la única fuente de forraje, con y sin DL-ácido málico (MA). Los animales fueron asignados al azar a uno de los dos tratamientos con 8 borregos cada uno: 1) 4 g de MA por kilogramo de alimento y 2) Control (sin MA). Cuatro borregos de cada tratamiento fueron sacrificados, después de la prueba de alimentación, para medir las características de la canal y los componentes que no son parte de la canal. Los borregos alimentados con MA presentaron una mayor (P<0.05) área del musculo Longissimus lumborum. Sin embargo, no hubo efecto (P>0.05) del MA sobre la ganancia diaria de peso y peso de los componentes que no son parte de la canal. En conclusión, la adición de 4 g de DL-ácido málico, en alimento con alto contenido energético, promueve el crecimiento muscular lo que mejora la calidad de la canal de los borregos en finalización.
Descargas
Citas
König EZ, Ojango JMK, Audho J, Mirkena T, Strandberg E, Okeyo AM, et al. Live weight, conformation, carcass traits and economic values of ram lambs of Red Maasai and Dorper sheep and their crosses. Trop Anim Health Prod 2017;(49):121-129.
González-Momita MI, Kawas JR, García-Castillo R, González-Morteo C, Aguirre-Ortega J, Hernández-Vidal G, et al. Nutrient intake, digestibility, mastication and ruminal fermentation of Pelibuey lambs fed finishing diets with ionophore (monensin lasalocid) and sodium malate. Small Ruminant Res 2009;(83):1-6.
Evans J, Martin SA. Factors affecting lactate and malate utilization by Selenomonas ruminantium. Appl Environ Microbiol 1997;(63):4853-4858. 4. Caldwell DR, Bryant MP. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol 1966;(14):794-801.
Nisbet DJ, Martin SA. Effect of a Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium Selenomonas ruminantium. J Anim Sci 1991;(69):4628-4633.
Callaway TR, Martin SA. Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J Anim Sci 1996;(74):1982-1989.
Kung LJr, Huber JT, Krummrey JD, Allison L, Cook RM. Influence of adding malic acid to dairy cattle rations on milk production, rumen volatile acids, digestibility, and nitrogen utilization. J Dairy Sci 1982;(65):1170-1174.
Khampa S, Wanapat M. Supplementation of urea level and malate in concentrate containing high cassava chip on rumen ecology and milk production in lactating cows. Pak J Nutr 2006;(5):530-535.
Castillo C, Benedito JL, Pereira V, Vazquez P, Lopez AM, Mendez J, et al. Malic acid supplementation in growing/finishing feedlot bull calves: Influence of chemical form on blood acid-base balance and productive performance. Anim Feed Sci Tech 2007;(135):222-235.
Sarkar S, Mohini M, Nampoothiri VM, Mondal G, Pandita S. Effect of tree leaves and malic acid supplementation to wheat straw based substrates on in vitro rumen fermentation parameters. Indian J Anim Nutr 2016;(33):421-426.
Carro MD, Ranilla MJ, Giraldez FJ, Mantecon AR. Effects of malate on diet digestibility, microbial protein synthesis, plasma metabolites, and performance of growing lambs fed a high-concentrate diet. J Anim Sci 2006;(84):405-410.
Sirohi SK, Pandey P, Sinhi B, Goel N, Mohini M. Effect of malic acid supplementation on rumen fermentation, digestibility and methanogenesis in wheat straw sorghum based total mixed diets in vitro. Indian J Anim Sci 2012;(82):1038-1045.
Foley PA, Kenny DA, Lovett DK, Callan JJ, Boland TM, O Mara FP. Effect of DL-malic acid supplementation on feed intake, methane emissions, and performance of lactating dairy cows at pasture. J Dairy Sci 2009;(92):3258-3264.
Muck RE, Wilson RK, O´Kiely P. Organic acid content of permanent pasture grasses. Irish J Agr Res 1991;(30):143-152.
Salama AAK, Caja G, Gardin D, Albanell E, Such X, Casals R. Effects of adding a mixture of malate and yeast culture (Saccharomyces cerevisiae) on milk production of Murciano-Granadina dairy goats. Anim Res 2002;(51):295-303.
Martin SA, Streeter MN, Nisbet DJ, Hill GM, Williams SE. Effects of DL- malate on ruminal metabolism and performance of cattle fed a high concentrate diet. J Anim Sci 1999;(77):1008-1015.
Díaz-Royón F, Arroyo JM, Alvir MR, Sánchez S, González J. Effects of protein protection with orthophosphoric or malic acids and heat on fattening lamb diets. Small Ruminant Res 2016;(134):58-61.
Carrasco C, Medel P, Fuentetaja A, Ranilla MJ, Carro MD. Effect of disodium/calcium malate or Saccharomyces cerevisiae supplementation on growth performance, carcass quality, ruminal fermentation products, and blood metabolites of heifers. J Anim Sci 2016;(94):4315-4325.
Avendaño-Reyes L, Macías-Cruz U, Álvarez-Valenzuela FD, Águila-Tepato E, Torrentera-Olivera NG, Soto-Navarro SA. Effects of zilpaterol hydrochloride on growth performance, carcass characteristics, and wholesale cut yield of hair-breed ewe lambs consuming feedlot diets under moderate environmental conditions. J Anim Sci 2011;(89):4188-4194.
Notter DR. Potential for hair sheep in the United Sates. J Anim Sci 2000;(77):1-8.
Dwyer CM, Lawrence AB, Bishop SC. The effects of selection for lean tissue content on maternal and neonatal lamb behaviors in Scottish Blackface sheep. Anim Sci 2001;(72):555-571.
AOAC. Official Methods of Analysis. 17th ed. Washington, DC, USA: Association of Official Analytical Chemists. 2000.
SPSS. Statistical Package for the Social Sciences for Windows (Version 20.0). Armonk, NY: IBM Corp. 2011.
Martínez-González S, Escalera-Valente F, Gómez-Danés AA, Plascencia A, Loya-Olguin JL, Ramírez–Ramírez JC, et al. Influence of levels of DL-malic acid supplementation on milk production and composition in lactating Pelibuey ewes and pre-weaning weight gain of their suckling kids. J Appl Anim Res 2015;(43):92-96.
Sniffen CJ, Ballard CS, Carter MP, Cotanch KW, Dann HM, Grant RJ, et al. Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Anim Feed Sci Technol 2006;(127):13-31.
Khampa S. Effects of malate level and cassava hay in high-quality feed block on rumen ecology and digestibility of nutrients in lactating dairy cows raised under tropical condition. Int J Livest Prod 2009;(1):6-11.
Montaño MF, Chai W, Zinn-Ware TE, Zinn RA. Influence of malic acid supplementation on ruminal pH, lactic acid utilization, and digestive function in steers fed high-concentrate finishing diets. J Anim Sci 1999;(77):780-784.
Wang C, Liu Q, Yang WZ, Dong Q, Yang XM, He DC, et al. Effects of malic acid on feed intake, milk yield, milk components and metabolites in early lactation Holstein dairy cows. Livest Sci 2009;(124):182-188.
Macías-Cruz U, Álvarez-Valenzuela FD, Rodríguez-García J, Correa-Calderón A, Torrentera-Olivera NG, Molina-Ramírez L, et al. Crecimiento y características de canal en corderos Pelibuey puros y cruzados F1 con razas Dorper y Katahdin en confinamiento. Arch Med Vet 2010;(42):147-154.
Plata FX, Hernandez PA, Mendoza GD, Martínez JA. Efecto de una α amilasa (ec 3.2.1.1) en el patrón de consumo y eficiencia productiva de corderos alimentados con una dieta alta en concentrado. Arch Med Vet 2015;(47):161-166. 31. Aksu ED, Sahin T, Kaya I, Unal Y. Effects of supplementation with different amounts of malic acid to Tuj lambs diets on fattening performance, rumen parameters and digestibility. Rev Med Vet 2012;(2):70-75.
Callaway TR, Martin SA, Wampler JL, Hill NS, Hill GM. Malate content of forage varieties commonly fed to cattle. J Dairy Sci 1997;(80):1651-1655.
Martin SA. Manipulation of ruminal fermentation with organic acids: a review. J Anim Sci 1998;(76):3123-3132.
Sanson DW, Stallcup OT. Growth response and serum constituents of Holstein bulls fed malic acid. Nutr Rep Int 1984;(30):1261-1267.
Shackelford SD, Cundiff LV, Gregory KE, Koohmaraie M. Predicting beef carcass cutability. J Anim Sci 1995;(73):406–413.
Khampa S, Wanapat M, Wachirapakorn C, Nontaso N, Wattiaux MA, Rowlison P. Effect of Levels of Sodium DL-malate Supplementation on Ruminal Fermentation Efficiency of Concentrates Containing High Levels of Cassava Chip in Dairy Steers. Asian Australasian J Anim Sci 2006;(19):368–375.
Khampa S, Chaowarat P, Singhalert R, Wanapat M. Manipulation of rumen ecology by yeast and malate in dairy heifer. Pak J Nutr 2009;(8):787-791.
Ortigues I, Visseiche AL. Whole-body fuel selection in ruminants: nutrient supply and utilization by major tissues. P Nutr Soc 1995;(54):235–251.
Wan R, Du J, Ren L, Meng Q. Selective adipogenic effects of propionate on bovine intramuscular and subcutaneous preadipocytes. Meat Sci 2009;(82):372–378.
Hosseini A, Behrendt C, Regenhard P, Sauerwein H, Mielenz M. Differential effects of propionate or β-hydroxybutyrate on genes related to energy balance and insulin sensitivity in bovine white adipose tissue explants from a subcutaneous and a visceral depot. J Anim Physiol Anim Nutr (Berl) 2012;(96):570-580.
Ríos-Rincón FG, Bernal BH, Cerrillo SMA, Estrada AE, Juarez RAS, Obregon JF, et al. Carcass characteristics, primal cuts yields and tissue composition of Katahdin x Pelibuey lambs fed cull-chickpeas. Rev Mex Cienc Pecu 2012;(3):357-371.
Castellanos-Ruelas AF. Técnicas para estimar la composición corporal. En: Técnicas de Investigación en Rumiología. Primera ed. México DF. México. Consultores en producción animal. 1990:257-267.
Owens FN, Gill DR, Secrist DS, Coleman SW. Review of some aspects of growth and development of feedlot cattle. J Anim Sci 1995;(73):3152-3172.
Partida PJA, Martínez RL. Body composition in Pelibuey lambs in terms of feed energy concentration and slaughter weight. Vet México 2010;(41):177-190.
Ríos-Rincón FG, Estrada-Angulo A, Plascencia A, López-Soto MA, Castro-Pérez BI, Portillo-Loera JJ, et al. Influence of protein and energy level in finishing diets for feedlot hair lambs: growth performance, dietary energetics and carcass characteristics. Asian Austral J Anim Sci 2014;(27):55-61.
Hersom MJ, Krehbiel CR, Horn GW, Hersom MJ, Horn GW, Krehbiel CR, et al. Effect of live weight gain of steers during winter grazing: II. Viceral organ mass, cellularity, and oxygen consumption. J Anim Sci 2004;(82):184-197.
Ruiz-Ramos J, Chay-Canul AJ, Ku-Vera JC, Magaña-Monforte JG, Gómez-Vázquez A, Cruz-Hernández A, et al. Carcass and non-carcass components of pelibuey ewes subjected to three levels of metabolizable energy intake. Ecosistemas y Recursos Agropecuarios 2016;(3):21-31.
Martins SR, Chizzotti ML, Yamamoto SM, Rodrigues RTS, Busato KC, Silva TS. Carcass and non-carcass component yields of crossbred Boer and Brazilian semiarid indigenous goats subjected to different feeding levels. Trop Anim Health Prod 2014;(46):647-653.
Descargas
Publicado
Cómo citar
-
Resumen873
-
PDF 446
-
PDF232
-
Texto Completo250
Número
Sección
Licencia
Los autores/as que publiquen en la Revista Mexicana de Ciencias Pecuarias aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Pecuarias reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.