Resistencia natural contra la tuberculosis en ganado. Revisión

Autores/as

  • Sara González Ruíz Universidad Autónoma de Querétaro. Av. de las ciencias S/N Juriquilla, Delegación Santa Rosa Jáuregui, 76230. Tel. 442 192 12 00, ext. 5384. Querétaro, Qro. México.
  • Germinal Jorge Cantó Alarcón Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, México.
  • Elba Rodríguez-Hernández Centro Nacional de Investigación Disciplinaria en Fisiología Animal-INIFAP. México.
  • Susana Flores Villalba Centro Nacional de Investigación Disciplinaria en Fisiología Animal-INIFAP. México.
  • Sergio I. Román Ponce Centro Nacional de Investigación Disciplinaria en Fisiología Animal-INIFAP. México.
  • Feliciano Milián Suazo Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, México.

DOI:

https://doi.org/10.22319/rmcp.v9i2.4396

Palabras clave:

Tuberculosis, Resistencia, Genética, Ganadería, M. bovis.

Resumen

En México, la prevalencia de tuberculosis bovina se estima en 16% en ganado para leche, y en poco menos del 1% para ganado para carne, sin embargo, observaciones de campo indican que, a pesar de las altas prevalencias en algunos hatos (25-35%) y la exposición por largos periodos, la prevalencia nunca llega al 100%, lo que sugiere que algunos animales son naturalmente resistentes a la enfermedad. Considerando que la manifestación clínica de la tuberculosis depende de la interacción de factores del hospedero, del patógeno y del medio ambiente, es lógico pensar que las variaciones genéticas en el hospedero pueden estar asociadas a resistencia o susceptibilidad a esta enfermedad. En este trabajo se presenta el resultado de una revisión minuciosa de los reportes en la literatura sobre este tema. Se describen de manera resumida los trabajos realizados con el objetivo de identificar variaciones genéticas entre individuos que manifiestan la enfermedad y aquellos que no enferman en diferentes especies: conejos, venado, bovinos y otros, incluyendo al humano. Se hace mención especial en los genes más frecuentemente relacionados con resistencia, por ejemplo el gen Nramp1, y la manera en que estos están asociados a factores del hospedero, tales como la respuesta inmune. Se concluye que es posible identificar elementos moleculares que lleven a la selección genética de animales resistentes a la tuberculosis, y a otras enfermedades, que pueden ser incorporados a los procesos ya existentes de selección de ganado.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sara González Ruíz, Universidad Autónoma de Querétaro. Av. de las ciencias S/N Juriquilla, Delegación Santa Rosa Jáuregui, 76230. Tel. 442 192 12 00, ext. 5384. Querétaro, Qro. México.

Estudiante del Doctorado en Ciencias Biológicas de la Universidad Autónoma de Querétaro

Germinal Jorge Cantó Alarcón, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, México.

Investigador en parasitología

Elba Rodríguez-Hernández, Centro Nacional de Investigación Disciplinaria en Fisiología Animal-INIFAP. México.

Investigadora en Biotecnología de la tuberculosis

Susana Flores Villalba, Centro Nacional de Investigación Disciplinaria en Fisiología Animal-INIFAP. México.

Investigadora en Microbiología de la tuberculosis

Sergio I. Román Ponce, Centro Nacional de Investigación Disciplinaria en Fisiología Animal-INIFAP. México.

Investigador en Mejoramiento Animal

Feliciano Milián Suazo, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, México.

Investigación en estudios de epidemiología molecular de la tuberculosis

Citas

Michel AL, Bengis RG, Keet DF, Hofmeyr M, de Klerk LM, Croos PC, et al. Wildlife tuberculosis in South African conservation areas: implications and challenges. Vet Microbiol 2010;112(91):91-100.

Torres-González P, Soberanis-Ramos O, Martínez-Gamboa A, Chávez-Mazari B, Barrios-Herrera MT, Torres-Rojas M, et al. Prevalence of latent and active tuberculosis among dairy farm workers exposed to cattle infected by Mycobacterium bovis. PLoS Negl Trop Dis 2013;7(4):e2177.

Pérez-Guerrero L, Milián-Suazo F, Arriaga-Díaz C, Romero-Torres C, Escartín-Chávez M. Epidemiología molecular de las tuberculosis bovina y humana en una zona endémica de Querétaro, México. Salud Pública Méx 2008;50(4):1-6.

Milián F, Rubio Y, Pérez L. Epidemiología de la tuberculosis bovina. En: La tuberculosis bovina en México: las bases. Libro técnico INIFAP-CENIDFA, Querétaro, México. 2013;13:51-76.

Milián SF, Harris B, Arriaga C, Thomsen B, Stuber T, González D, Álvarez G, et al. Sensibilidad y especificidad de PCR anidada y Spoligotyping como pruebas rápidas de diagnóstico de tuberculosis bovina en tejido fresco. Rev Méx Cienc Pecu 2010;1(4):403-415.

Ameni G, Aseffa A, Engers H, Young D, Gordon S, Hewinson G, et al. High prevalence and increased severity of pathology of bovine tuberculosis in Holsteins compared to Zebu breeds under field cattle husbandry in central Ethiopia. Clin Vaccine Immunol 2007;14:1356-1361.

Cantó-Alarcón GJ, Rubio-Venegas Y, Bojorquez-Narváez L, Pizano-Martínez OE, García-Casanova L, Sosa-Gallegos S, et al. Efficacy of vaccine formula against tuberculosis in cattle. PLOS ONE 2013;8(19):e76418.

Ángel-Marín PA, Cardona-Cadavid H, Cerón-Muñoz MF. Genómica en la producción animal. Rev Colombiana Cienc Anim 2013;5(2):497-518.

le Roex N, Koets AP, van Helden PD, Hoal EG. Gene polymorphisms in African buffalo associated with susceptibility to bovine tuberculosis infection. PLOS ONE 2013;8(5):e64494.

Bermingham ML, Bishop SC, Woolliams JA, Pon-Wong R, Allen AR, McBride SH, et al. Genome wide association study identifies novel loci associated with resistance to bovine tuberculosis. Heredity 2014;112:543-551.

Comstock GW. Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 1978;117:621-624.

Allen AR, Minozzi G, Glass EJ, Skuce RA, McDowell SWJ, Woolliams JA, Bishop SC. Bovine tuberculosis: the genetic basis of host susceptibility. Proc Royal Society B: J Biol Sci 2010;(277):2737–2745.

Rieder HL. Clarification of the Luebeck infant tuberculosis. Pneumologie 2003;57:402-405.

Lurie MB. Experimental epidemiology of tuberculosis: hereditary resistance to attack by tuberculosis and to the ensuing disease and the effect of the concentration of tubercle bacilli upon these two phases of resistance. J Exp Med 1944;79:573-589.

Gros P, Skamene E, Forget A. Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol 1981;127:2417-2421.

Acevedo WK, Vicente J, Gortazar C, Hofle U, Fernández de Mera IG, Amos W. Genetic resistance to bovine tuberculosis in the Iberian wild boar. Mol Ecol 2005;14:3209-3217.

Naranjo V, Acevedo WK, Vicente J, Gortazar C, de la Fuente J. Influence of methylmalonyl-CoA mutase alleles on resistance to bovine tuberculosis in the European wild boar (Sus scrofa). Anim Genet 2008;39:316-320.

Driscoll EE, Hoffman JI, Green LE, Medley GF, Amos W. A preliminary study of genetic Factors that influence susceptibility to bovine tuberculosis in the British cattle herd. PLOS ONE 2011;6(4):e18806.

Kadarmideen HN, Ali AA, Thomson PC, Mûller B, Zinsstag J. Polymorphisms of the SLC11A1 gene and resistance to bovine tuberculosis in African Zebu cattle. Anim Genet 2011;42:656-658.

Finlay EK, Berry DP, Wickham B, Gormley EP, Bradley DG. A genome wide association scan of bovine tuberculosis susceptibility in Holstein-Friesian dairy cattle. PLOS ONE 2012;7(2):e30545.

Rupp R, Boichard D. Genetics of resistance to mastitis in dairy cattle. Vet Res 2003;34:671-688.

Biffa D, Bogale A, Godfroid J, Skjerve E. Factors associated with severity of bovine tuberculosis in Ethiopian cattle. Trop Anim Health Prod 2012;44:991-998.

Bermingham ML, More SJ, Good M, Cromie AR, Higgins IM, Brotherstone S, et al. Genetics of tuberculosis in Irish Holstein-Friesian dairy herds. J Dairy Sci 2009;92:3447-3456.

Hernández-Marín JA, Cortez-Romero C, Clemente-Sánchez F, Gallegos-Sánchez J, Salazar-Ortiz J, Tarango-Arámbula LA. Risk of transmission of Mycobacterium avium subspecies paratuberculosis (Map) in domestic and wild species. AGROProductividad 2014;7:65-70.

Shulman NF, Viitala SM, de Koning DJ, Virta J, Mâki-Tamila A, Vilkki JH. Quantitative trait loci for Health traits in Finnish Ayrshire cattle. J Dairy Sci 2004;87:443-449.

Sun L, Song Y, Ria H, Yang H, Hua G, Guo A, et al. Polymorphisms in toll-like receptor 1 and 9 genes and their association with tuberculosis susceptibility in Chinese Holstein cattle. Vet Immunol Immunopathol 2012;147:195-201.

Raphaka, K, Matika, O, Sánchez-Molano, E, Mrode, R, Coffey, MP, et al. Genomic regions underlying susceptibility to bovine tuberculosis in Holstein-Friesian cattle. BMC Genet 2017;18:27.

Meade KG, Gormley E, Park SDE, Fitzsimons T, Rosa GJM, Costello E, et al. Gene expression profiling of peripheral blood mononuclear Cells (PBMC) from Mycobacterium bovis infected cattle after in vitro antigenic stimulation with purified protein derivative of tuberculin (PPD). Vet Immunol Immunopathol 2006;113:73-89.

Meade KG, Gormley E, Doyle MB, Fitzsimons T, O´Farrelly C, Costello E, et al. Innate gene repression associated with Mycobacterium bovis infection in cattle: toward a gene signature of disease. BMC Genomics 2007;8:400.

Blanco FC, Shierloh P, Bianco MV, Caimi K, Meikle V, Alito AE, et al. Study of the immunological profile towards Mycobacterium bovis antigens in naturally infected cattle. Microbiol Immunol 2009;53:460-467.

Killinck KE, Browne JA, Park SDE, Magee DA, Martin I, Meade KG, et al. Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes. BMC Genomics 2011;12:611.

Qureshi T, Templeton JW, Adams LG. Intracellular survival of Brucella abortus, Mycobacterium bovis BCG, Salmonella dublin and Salmonella typhimurium in machophages from cattle genetically resistant to Brucella abortus. Vet ImmunolImmunophatol 1995;50:55-66.

Bukhari M, Aslam MA, Khan A, Iram Q, Akbar A, Naz AG, et al. TLR8 gene polymorphism and association in bacterial load in southern. Int J Immunogenet 2015;42(1):46-51.

Richardson IA, Berry DP, Wiencko HL, Higgins IM, More SJ, McClure J, et al. A genome wide association study for genetic susceptibility to Mycobacterium bovis infection in dairy cattle identifies a susceptibility QTL on chromosome 23. Genet Sel Evol 2016;48:19-23.

Cheng Y, Huang C, Tsai HJ. Relationship of bovine NOS2 gene polymorphisms to the risk of bovine tuberculosis in Holstein cattle. J Vet Med Sci 2016;78(2):281-286.

Bhaladhare A, Sharma D, Kumar A, Sonwane A, Chauhan A, Singh R, et al. Single nucleotide polymorphisms in toll-like receptor genes and case-control association studies with bovine tuberculosis. Vet World 2016;9(5):458-464.

Amos W, Driscoll E, Hoffman JI. Candidate genes versus genome-wide associations: which are better for detecting genetic susceptibility to Infectious disease? Proc Biol Sci 2011;278:1183-1188.

Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet 2001;(2):91-99.

Stein CM. Genetic epidemiology of tuberculosis susceptibility: impact of study design. PLOS Pathog 2011;7:e1001189.

Matukumalli LK, Lawley CT, Shnabel RD, Taylor JF, Allan MF, Heaton MP, et al. Development and characterization of a high density SNP genotyping assay for cattle. PLOS ONE 2009;4(4):e5350.

Martínez NCA, Manrique PC, Elzo M. Cattle genetic evaluation: a historical perception. Rev Colom Cienc Pecu 2012;25(2):293-311.

Muhasin VN, Kumar A, Rahim A, Sebastian R, Mohan V, Dewangan P, et al. An overview on single nucleotide polymorphism studies in mastitis Research. Vet World 2014;7(6):416-421.

Durán-Aguilar M, Román-Ponce SI, Ruiz-López FJ, González-Padilla E, Vásquez-Pelaéz CG, Bagnato CG, et al. Genome wide association study for milk somatic cell score in Holstein cattle using copy number variation as markers. J Anim Breed Genet 2016;134:49-59.

Cohn DL, Bustreo F, Raviglione MC. Drug resistant tuberculosis: review of the worldwide situation and the WHO/IUATLD global surveillance. Project Clin Infect Dis 1997;24(1):121-130.

Srinivas V, Reich R, Dou S, Jasperse L, Pan X, Wanger A, et al. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2003;47(4):1241-1250.

Elsik CG, Tellam RL, Worley KC. The genome sequence of Taurine cattle: A window to ruminant biology and evolution. Science 2009;324(5926):522-528.

Hou Y, Liu G, Bickart D, Cardone MF, Wang K, Kim E, et al. Genomic characteristics of cattle copy number variations. BMC Genomics 2011;12:127.

Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007;315(5813):848-853.

Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature 2006;444:444-454.

Fiegler H, Geigl JB, Langer S, Rigler D, Porter K, Unger K, et al. Hifh resolution array-CGH analysis of single cells. Nucleic Acids Res 2007;35(3):15.

Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SFA, et al. PennCNV: An integrated hidden Markow model designed for high resolution copy number variation detection in whole genome SNP genotyping data. Genome Res 2007;17(11):1665-1674.

Liu GE, Hou Y, Zhu B, Cardone MF, Jiang L, Cellamare A, et al. Analysis of copy number variations among diverse cattle breeds. Genome Res 2010;5:693:703.

Jian L, Jiang J, Yang J, Liu X, Wang J, Ding X, et al. Genome-wide detection of copy number variations using high-debsuty SNP genotyping platforms in Holsteins. BMC Genomics 2013;14:131.

Fadista J, Thomsen B, Holm LE, Bendixen C. Copy number variation in the bovine genome. BMC Genomics 2010;11:284.

Bae JS, Cheong HS, Kim LH, NamGung S, Park TJ, Chun JY, et al. Identification of copy number variations and common deltion polymorphisms in cattle. BMC Genomics 2010;11:232.

Bishop SC, Woolliams JA. Genomics and disease resistance studies in livestock. Livestock Sci 2014;166:190-198.

Descargas

Publicado

28.03.2018

Cómo citar

González Ruíz, S., Cantó Alarcón, G. J., Rodríguez-Hernández, E., Flores Villalba, S., Román Ponce, S. I., & Milián Suazo, F. (2018). Resistencia natural contra la tuberculosis en ganado. Revisión. Revista Mexicana De Ciencias Pecuarias, 9(2), 328–345. https://doi.org/10.22319/rmcp.v9i2.4396
Metrics
Vistas/Descargas
  • Resumen
    2327
  • PDF
    1077
  • XML
    651

Número

Sección

Revisión de literatura

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a

1 2 3 > >>