Turmeric (Curcuma longa Linn.) as a phytogenic growth promoter alternative for antibiotic and comparable to mannan oligosaccharides for broiler chicks
DOI:
https://doi.org/10.22319/rmcp.v8i1.4309Palabras clave:
Turmeric, Aantibiotic, Prebiotics, Carcass traits, Meat quality, Blood biochemical, Blood biochemistry, Broiler.Resumen
This work aimed at investigating the potential as a growth enhancer of different dietary concentrations of turmeric (Curcuma longa Linn.) as an alternative to oxytetracyline and antibiotics and as comparable to mannan oligosaccharide for broiler chicks. A total of 252 Hubbard broiler chicks at one day of age were distributed randomly in a straight run experimental design among six treatments, each replicated seven times, with six unsexed chicks per replicate. The basal diet was administered without supplements (control group) or supplemented with turmeric at 0.5, 1, and 2 g/kg diet, or with mannan oligosacride (MOS) at 1 g/kg feed or with oxytetracycline (OTC) at 50 mg/kg feed. Growth performance, carcass characteristics, meat quality traits, blood biochemical constituents, antioxidant status and red blood cell (RBCs) were investigated. Turmeric supplementation at 1 g/kg feed significantly improved feed conversion ratio (FCR) and European production index compared to the control group and MOS groups. The results indicated that turmeric can be used at 1 kg/t feed as a phytogenic feed additive as an alternative to OTC or MOS without negative effects on the productive and economic traits of broilers. There were no differences from using OTC and MOS, while there was an increase in the European production efficiency index and the broilers’ health status.
Descargas
Citas
Windisch WM, Schedle K, Plitzner C, Kroismayr A. Use of phytogenic products as feed additives for swine and poultry. J Anim Sci 2008;86:140-148.
Ahmadi F. Effect of Turmeric Curcumin longa powder on performance, oxidative stress state and some of blood parameters in broilers fed on diets containing aflatoxin. Global Vet 2010;5:312-317.
Attia YA, Zeweil HS, Alsaffar AA, El-Shafy AS. Effect of nonantibiotic feed additives as an alternative to flavomycin on broiler chickens production. Archiv Geflügelk 2011;75:40-48.
Attia YA, Al-Harthi MA. Nigella seed oil as an alternative to antibiotic growth promoters for broiler Chickens. Europ Poult Sci 2015;79:DOI, 10.1399/eps.2015.80.
Eevuri TR, Putturu R. Use of certain herbal preparations in broiler feeds - A review, Vet World 2013;6:172-179.
Durrani FR, Ismail M, Sultan A, Suhail SM, Chand N, Durrani Z. Effect of different levels of feed added turmeric Curcuma longa on the performance of broiler chicks. J Agric Biol Sci 2006;1:9-11.
Nasir Z, Grashorn MA. Echinacea, A potential feed and water additive in poultry and swine production. Arch Geflügelk 2009;73:227-236.
Nasir Z, Grashorn MA. Effects of Echinacea purpurea and Nigella sativa supplementation on broiler performance, carcass and meat quality. J Anim Feed Sci 2010;19:94-104.
Nouzarian R, Tabeidian SA, Toghyani M, Ghalamkari G, Toghyani M. Effect of turmeric powder on performance, carcass traits, humoral immune responses, and serum metabolites in broiler chickens. J Anim Feed Sci 2011;20:389-400.
Kiuchi F, Goto Y, Sugimoto N, Akao N, Kondo K, Tsuda Y. Nematocidal activity of turmeric, Synergistic action of curcuminoids. Chem Pharm Bull 1993;41:1640-1643.
Al-Sultan SI. The effect of Curcuma longa turmeric on overall performance of broiler chickens. Int J Poult Sci 2003;2:351-353.
Sadeghi GH, Karimi A, Padidar JSH, Azizi T, Daneshmand A. Effects of cinnamon, thyme and turmeric infusions on the performance and immune response in of 1-to 21-day-old male broilers. Braz J Poult Sci 2012;14:15-20.
Osawa T, Sugiyama Y, Inayoshi M, Kawakisi S. Anti-oxidative activity of tetrahydrocurcuminoids. Biotech Biochem 1995;59:1609-1616.
Wuthi-Udomler M, Grisanapan W, Luanratana O, Caichompoo W. Anti-fungal activities of plant extracts. South East Asian J Trop Med Public Health 2000;31:178-182.
Alia BH, Marrif H, Noureldayemc SA, Bakheitd AO, Blunden G. Biological properties of curcumin, a review. NPC 2006;1:509- 521.
Soni, KB, Lahiri M, Chackradeo P, Bhide SV, Kuttan R. Protective effect of food additives on aflatoxin-induced mutagenicity and hepatocarcinogenicity. Cancer Letters 1997;115:129-133.
Allen PC, Fetterer RH. Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clin Microbiol Rev 2002;15:58-65.
Lee SH, Lillehoj HS, Jang SI, Kim DK, Ionescu C, Bravo D. Effect of dietary curcuma, capsicum, and lentinus on enhancing local immunity against Eimeria acervulina infection. J Poult Sci 2010;47:89-95.
Abou-Elkhair R, Ahmed HA, S. Selim S. Effects of black pepper (Piper nigrum), turmeric powder (Curcuma Longa) and coriander seeds (Coriandrum sativum) and their combinations as feed additives on growth performance, carcass traits, some blood parameters and humoral immune response of broiler chickens. Asian-Austral J Anim Sci 2014;27:847-854.
Mehala C, Moorthy M. Production performance of broilers fed with aloe vera and Curcuma longa (turmeric). Int J Poult Sci 2008;7:852-856.
Emadi M, Kermanshahi H. Effect of turmeric rhizome powder on the activity of some blood enzymes in broiler chickens. Int J Poult Sci 2007;6:48-51.
Hooge DM. Meat-analysis of broiler chicken pen trials evaluating dietary mannan oligosaccharide 1993-2003. Int J Poult Sci 2004;3:163-174.
Attia YA, Abd El Hamid EA, Ismaiel AM, El Nagar ASh. The detoxication of nitrate by two antioxidants or a probiotic and the effects on blood and seminal plasma profiles and reproductive function of NZW rabbit bucks. Anim 2013;7:591-601.
Ogunwole OA, Abu OA, Adepoju IA. Performance and carcass characteristics of broiler finishers fed acidifier based diets. Pak J Nut 2011;10:631-636.
Khadem A, Soler L, Everaert N, Niewold TA. Growth promotion in broilers by both oxytetracycline and Macleaya cordata extract is based on their anti-inflammatory properties. Br J Nut 2014;112:1110-1118.
Official methods of analysis of AOAC International. Official Methods of Analysis 16th ed. 2007.
Janssen WM. European table of energy values for poultry feedstuffs, 3rd ed. Wageningen, The Netherlands. 1989.
Radwan SS. Coupling of two dimension thin layer chromatography with gas chromatography for the quantitative analysis of lipids glasses and their constituent fatty acids. J Chromatography Sci 1978;16:538-542.
Blainski A, Lopes GC, De Mello JCP. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 2013;18:6852-6865.
Benzie IF, Strain JJ. Ferric reducing/antioxidant power assay, direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth Enzymol 1999;299:15-27.
National Research Council, NRC. Nutrient Requirements of Poultry. 9th ed. Washington DC: National Academic Press; 1994.
Attia YA, El-Tahawy WS, Abd El-Hamid AE, Nizza A, El-Kelway MI, Al-Harthi MA, Bovera F. Effect of feed form, pellet diameter and enzymes supplementation on carcass characteristics, meat quality, blood plasma constituents and stress indicators of broilers. Archiv Tierzucht 2014;57:1-14.
Attia YA, Abd Al-Hamid AE, Ibrahim MS, Al-Harthi MA, Bovera F, El-Naggar A Sh. Productive performance, biochemical and hematological traits of broiler chicks supplemented with propolis, bee pollen, and mannan oligosaccharides continuously or intermittently. Livestock Sci 2014;164:87-95.
Snyder DB, Marquardt WW, Mallinson ET, Savage PK, Allen DC. Rapid serological profiling by enzyme-linked immunosorbent assay. III. Simultaneous measurements of antibody titers to infectious bronchitis, infectious bursal disease, and Newcastle disease viruses in a single serum dilution. Avian Disease 1984;28:12-24.
Bancroft JD, Layton C, Suvarna SK. Bancroft’s theory and practice of histological techniques. 7th ed, Churchill Livingstone: Elsevier; 2013.
Aptekmann K, Artoni S, Stefanini M, Orsi M. Morphometric analysis of the intestine of domestic quails (Coturnix coturnix japonica) treated with different levels of dietary calcium Anat Histol Embryol 2001;30:277-280.
SAS, Institute. User’s guide. Ver 9.2, 2nd ed. SAS institute Inc. Cary NC. USA. 2009.
Gur S, Turgat-Bubk D, Gur N. Antimicrobial activates and some fatty acids of turmeric, ginger root and linseed used in the treatment of infectious diseases. World J Agric Sci 2006;2:439- 442.
Kumar M, Choudhary RS, Vaishnav JK. Effect of supplemental prebiotic, probiotic and turmeric in diet on the performance of broiler chicks during summer. Ind J Poult Sci 2005;40:137-141.
Yarru LP, Settivari RS, Gowda NKS, Antoniou E, Ledoux DR, Rottinghaus GE. Effects of turmeric Curcuma longa on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poult Sci 2009;88:2620-2627.
Gowda NKS, Ledoux DR, Rottinghaus GE, Bermudez AJ, Chen YC. Efficacy of turmeric Curcuma longa, containing a known level of curcumin, and a hydrated sodium- calcium aluminosilicate to ameliorate the adverse effects of aflatoxin in broiler chicks. Poult Sci 2008;87:1125-1130.
Abbas RZ, Iqbal Z, Khan MN, Zafar MA, Zia, MA. Anticoccidial activity of Curcuma longa L. in broilers. Braz Arch Biol Technol 2010;53:63-67.
Roughley PJ, Whiting DA. Experiments in the biosynthesis of curcumin. J Chem Soc Perkin Trans 1973;1:2379-2388.
Masuda T, Maekawa T, Hidaka K, Bando H, Takeda Y, Yamaguchi H. Chemical studies on antioxidant mechanism of curcumin, analysis of oxidative coupling products from curcumin and linoleate. J Agric Food Chem 2001;49:2539-2547.
Rajput N, Muhammah N, Yan R, Zhong X, Wang T. Effect of dietary supplementation of curcumin on growth performance, intestinal morphology and nutrients utilization of broiler chicks. J Poult Sci 2012;50:44-52.
Asai A, Miyazawa T. Dietary curcuminoid prevent high-fat induced lipid accumulation in the rate liver epididymal adipose tissue. J Nutr 2001;131:2932-2935.
Samarasinghe K, Wenk C, Silva KSFT, Gunasekera JMDM. Turmeric Curcuma longa root powder and mannanoligosaccharides as alternatives to antibiotics in broiler chicken diets. AsianAust J Anim Sci 2003;16:1495-1500.
Emadi M, Kermanshahi H. Effect of turmeric rhizome powder on performance and carcass characteristics of broiler chickens. Int J Poult Sci 2006;5:1069-1072.
Reddy T. Effect of herbal preparations on the promoters. Poultry fortune performance of broilers [M.V.Sc., thesis]. Sri Venkateswara Veterinary University, Tirupathi. India. 2010.
Dibner JJ, Richards JD. Antibiotic growth promoters in agriculture, history and mode of action. Poult Sci 2005;84:634-643. 51. Niewold TA. The non-antibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult Sci 2007;86:605-609.
Descargas
Publicado
Cómo citar
-
Resumen3581
-
PDF 782
-
XML 562
Número
Sección
Licencia
Los autores/as que publiquen en la Revista Mexicana de Ciencias Pecuarias aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Pecuarias reconoce y respeta el derecho moral de los autores/as, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.