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Abstract: 

The purpose was to evaluate the chemical composition and adaptation potential of L. 

hexandra under crude oil stress conditions, through the rhizobacterial population, crude 

protein accumulation, neutral detergent fiber, acid detergent fiber, and lignin in foliage of 

young plants emerging from the main tillers of the plant at different growth ages (d 180 and 

360), as well as the production of young plants in the tillering stage, and the aerial and root 

dry matter. The results showed that crude oil concentrations in the soil significantly affected 

the population of Azotobacter spp. (0.361*); however, those of Azospirillum spp. and 

Pseudomonas spp. were inhibited, while both populations increased with time extension 

(0.778*, 0.767*). Likewise, the synthesis of crude protein (0.551**) and lignin in the foliage 
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(0.354*) and the production of young plants in the tillering stage (0.465**), as well as of root 

dry matter (0.362*) were increased, indicating a strategy of L. hexandra to survive and adapt 

to soil contamination by crude oil. Nevertheless, the chemical composition was affected by 

the age of the grass, in which the percentage of neutral detergent fiber (0.832**), acid 

detergent fiber (0.741**), and lignin (0.661**) increased, while that of crude protein 

decreased (-0.497**). 
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Introduction 
 

 

Soils contaminated with crude oil have generated a toxic environment for plants and 

microbial activity in the rhizosphere of various plant species(1,2) due to petroleum’s toxic, 

mutagenic, and carcinogenic nature(3). Soil contamination with crude oil affects fertility in a 

negative way because crude oil decreases the availability of nutrients (nitrogen, phosphorus, 

and potassium), pH, and moisture content, and increases the electrical conductivity and 

organic carbon content of the soil(4) directly affecting plant growth and development(5). In 

addition, the oil also forms a hydrophobic surface around the roots, which limits the 

absorption of water and nutrients from the soil(6). In oiled soil, Leersia hexandra grows and 

produces forage(7); it is a perennial grass that inhabits humid areas in tropical and subtropical 

regions; it propagates vegetatively by rhizomes, invading wetlands by the abundant 

accumulation of its foliage and roots on the soil and water(8) and is highly consumed by cattle 

in both dry and rainy seasons(9). 

 

The rhizosphere is the soil-root interface, the volume of soil influenced by root activity(10). 

Tropical grasses are characterized by an extended rhizosphere system due to the abundant 

fibrous root system that characterizes them, and have demonstrated adaptation to the stress 

conditions established in soils contaminated with crude oil(11). Tropical grasses that have 

naturally evolved under stress conditions due to the accumulation of biogenic and petroleum 

carbon in the soil are able to mitigate stress by changing the chemical conditions in the 

rhizosphere and the proliferation of specific heterotrophic microorganisms(12,13). The 

rhizobacteria are free-living heterotrophs associated with the plant root(14); they stimulate 
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plant growth, provide plant tolerance to petroleum diesel stress(15), and are involved in the 

rhizodegradation processes of alkanes, cycloalkanes, and polycyclic aromatic 

hydrocarbons(16). Azotobacter, Azospirillum, and Pseudomonas bacterial genera tolerate 

crude oil-induced stress(17,18). Plant growth-promoting rhizobacteria that colonize the 

rhizosphere mineralize intermediate metabolites from the decomposition of organic carbon 

in petroleum(19), and the exoenzymes released by them reduce and oxidize nitrogen, 

phosphorus, and sulfate, but also fix nitrogen biologically(20). The adaptation of grasses to 

crude oil soil suggests that it has a rhizosphere with roots that assimilate NO3, H2PO4, and 

SO4, and are used in an essential way in the primary metabolism inside the plant(21). Grasses 

adapted to crude oil exposure are likely to respond in a similar manner to other plant species 

such as Banksia seminuda Rie., Hakea prostrata R. Br.(22), and Secale cereal L.(23) where 

abiotic stress modifies the development and expression of genes involved in cell synthesis in 

the roots and foliage(24). The adaptation of plastids to stress by abiotic factors is based on the 

positive response of growth, production, and synthesis of secondary metabolites. In this 

regard, Orocio-Carrillo et al(13) report that the root and leaf protein content of L. hexandra 

has a hormetic response to doses of total petroleum hydrocarbons in the soil. Correa and 

Maranho(25) indicated that stem length, root biomass, and stomatal density increase in 

Echinochloa polystachya (Kunth) Hitchc. exposed to oil-containing soil; Habermann et al(26) 

indicate that water deficit stress and soil heating induced an increase in fiber and lignin 

content and reduced leaf protein in Panicum maximum Jacq; other authors(27,28) report that 

high temperatures lead to high detergent fiber and lignin content in the cell wall, and 

decreased protein synthesis in forage grasses. The objective of this study was to determine 

the rhizobacterial population, crude protein accumulation, neutral detergent fiber, acid 

detergent fiber, and lignin in the foliage, as well as the production of young L. hexandra 

plants in the tillering stage and in their aerial and root dry matter, to obtain a grass adapted 

to soils contaminated with crude oil for the Mexican humid tropics. 

 

 

Material and methods 
 

 

Soil and rhizome collection 

 

 

Uncontaminated soil (Gleysol) was collected from the surface layer (0-30 cm) located in 

Ejido Blasillo 4th Section, Huimanguillo, Tabasco, Mexico (18° 05' 08.4” N and 93° 56' 50” 

W). The soil was dried under shade, ground, and sieved (5 mm mesh). The physical and 

chemical characteristics of the soil are shown in Table 1. L. hexandra rhizomes were collected 

from a wetland affected by a chronic oil spill, located two kilometers southwest of the “La 
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Venta” Gas Processing Complex. The cultivation of L. hexandra seedlings was similar to the 

procedure used by Orocio-Carrillo et al(13). 

 

Table 1: Physical and chemical characteristics of soil and oil 

Soil characteristics  

Texture  

Loamy 

clayey 

sandy 

Sand  

45.2% 

Silt  

20.7% 

Clay  

34.1% 

pH 

5.5 

OM  

17.2% 

TN  

0.66% 

SO4
2-  

45 

mg 

kg-1 

PO4-  

85 

mg 

kg−1 

EC 

0.9 

dS 

m-1 

CEC 

9.6 

cmol 

kg-1 

Characteristics of petroleuma  

API Gravity Sulphur  Factions  

32° 1.8% Saturated 

61.2 % 

Aromatic  

24.8 % 

Asphaltenes + 

Resins 14 % 

 

OM= organic matter; TN= total nitrogen; EC= electrical conductivity; CEC= cation exchange capacity. 

aHydrocarbon fractions using the Soxhlet and gravimetric methods. 

 

 

Soil contamination and experimental design 

 

 

32° API crude oil (CO) was obtained from the Ogarrio Field, Battery 2, in Huimanguillo, 

Tabasco, Mexico. The experiment was carried out with a completely randomized design and 

a 4x2 factorial arrangement: four concentrations of CO [0 (control), 30, 60, and 90 g kg-1 

DW (dry weight)] and two exposure times of L. hexandra to CO= (d 180 and 360). A total of 

eight treatments with four replicates maintained at random locations in a microtunnel with 

an average temperature of 29 ± 6 °C and humidity at field capacity of 32 ± 5 %. The 

experimental unit was a plastic container with 4 kg of dry soil and one L. hexandra plant. 

 

 

Rhizobacterial population 

 

 

Azospirillum bacteria were grown on Congo red agar(29), Azotobacter bacteria on Asby 

agar(29), and Pseudomonas bacteria on cetrimide + glycerol agar(30). Cultures were incubated 

at 28 °C for 72 h, and counts were expressed as colony forming units (CFU) per gram of soil. 
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Chemical composition of L. hexandra 

 

 

Destructive sampling of plant tissue (leaves and stems) from young plants emerging from the 

main plant of L. hexandra that were 180 and 360 days old was performed, dried in a forced 

air oven at 60 °C for 72 h and ground for crude protein, neutral detergent fiber, acid detergent 

fiber, and lignin analysis(31,32). 

 

 

Production analysis 

 

 

The evaluation of young plants in the tillering stage, aerial dry matter, and root dry matter 

was similar to the procedure used by Orocio-Carrillo et al(33). 

 

 

Statistical analyses 

 

 

The data collected for all variables were subjected to an analysis of variance and a multiple 

comparison test of means with Tukey's method (P<0.05), as well as to Pearson's bivariate 

correlation, using the SAS v.9.4 statistical software(34). 

 

 

Results 
 

 

Rhizobacterial population 

 

Table 2 shows the changes in the mean values of the three groups of rhizobacteria due to the 

effect of crude oil on the soil and to the exposure time. The highest density of Azotobacter 

[438 and 132 x 103 CFU g-1 dry rhizosphere (d.r.)] was found in soil with 90 g kg-1 of crude 

oil, where it was 106.6 % and 40.4 % higher than the control at d 180 and 360 respectively. 

However, the densities of Azospirillum and Pseudomonas decreased. In general, the effect of 

crude oil contamination increases in the population of Azotobacter (81.7 %) and decreases in 

those of Azospirillum and Pseudomonas by 36 and 47.7 %, respectively. However, the effect 

of the time of evaluation induced a positive response in the density of Azospirillum and 

Pseudomonas, being 1.9 and 23.9 times higher at d 360 than at d 180. 
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Table 2: Changes in Azospirillum, Azotobacter, and Pseudomonas in the rhizosphere of L. 

hexandra exposed to crude oil at 180 and 360 days 

Time/Crude oil 

(g kg−1) 

Azospirillum % Azotobacter % Pseudomonas % 

103 UFC g−1 r.s. 101 UFC g−1 r.s. 

180 days 

0 

30 

60 

90 

360 days 

0 

30 

60 

90 

Contamination 

Without 

With 

Time (days) 

180 

360 

 

84 c 

67 d 

53 e 

21 f 

 

144 a 

101 b 

102 b 

95b c 

 

114* 

73 

 

56 

110* 

 

 

−20.2 

−36.9 

−75.0 

 

 

−29.9 

−29.2 

−34.0 

 

 

−36 

 

 

 

 

212 c 

372 b 

482 a 

438 a 

 

94 e 

85 e 

159 d 

132 de 

 

153 

278* 

 

376* 

117 

 

 

+75.5 

+127.3 

+106.6 

 

 

−9.6 

+69.1 

+40.4 

 

 

+81.7 

 

 

 

 

95 c 

58 c 

34 c 

74 c 

 

2,427 a 

2,335 a 

572 bc 

889 b 

 

1,261* 

660 

 

65 

1,556* 

 

 

−38.9 

−64.2 

−22.1 

 

 

−3.8 

−76.4 

−63.4 

 

 

−47.7 

 

 

 

The symbol % (+) represents an increase, and % (–), a decrease of Azospirillum, Azotobacter, and 

Pseudomonas at 180 and 360 d with respect to the values of the control treatment (0 g kg−1 crude oil). 
abcde Different lowercase letters within a column indicate statistically different values (P≤0.05, n=4). * 

Statistically higher. 

 

Chemical composition of L. hexandra 

 

Figure 1 shows the tendency in crude protein content in the aerial dry matter of young L. 

hexandra plants by effect of crude oil dosage and exposure time. The highest crude protein 

content at d 180 (9.1 %) and 360 (8.4 %) was recorded at the 90 g kg-1 crude oil concentration, 

being 1 and 1.5 % higher than that of the control (Figure 1a). On the other hand, the 
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evaluation time decreased from 8.4 to 7.5 % as the age of the plant increased from 180 to 

360 d (Figure 1b). 

 

Figure 1: Effect of the crude oil in the soil (a) and exposure time (b) on the crude protein 

percentage in L. hexandra 

 

 

Figure 2 shows the performance in neutral detergent fiber. Significant differences were 

observed according to the oil dose and the evaluation time (P≤0.05). The dose of 90 g kg-1 

of crude oil induced the highest neutral detergent fiber content at d 180 (75.3 %) and 360 

(79.3 %), reaching an increase of 1.3 and 2.5 % over that of the control (Figure 2a). As for 

the evaluation time, it increased from 73.9 to 77.9 % as plant maturity increased from 180 to 

360 d (Figure 2b). 

 

Figure 2: Effect of crude oil in the soil (a) and the exposure time on the neutral detergent 

fiber in L. hexandra 
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abcd Different letters indicate different values (P≤0.05, n=4). 

 

abcd Different letters indicate different values (P≤0.05, n=4). 
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Figure 3 shows the behavior in the content of acid detergent fiber. At day 180, the dose of 

crude oil was observed to stimulate the acid detergent fiber, which was higher (41.3 %) in 

soil with 90 g kg-1 of crude oil, increasing 6.4 % over that of the control (Figure 3a). At day 

360, crude oil concentrations showed a statistically similar response to the control. As for the 

evaluation time, the acid detergent fiber was stimulated to increase from 36.8 to 43.6 % at 

day 180 and 360, respectively (Figure 3b). 

 

Figure 3: Effect of the crude oil on the soil (a) and time of exposure (b) on the acid 

detergent fiber in L. hexandra 

 

abcd Different letters indicate different values (P≤0.05, n=4). 

 

The effect of crude oil on the lignin content in L. hexandra harvested at different ages showed 

significant differences (P≤0.05) (Figure 4). At d 180, it is observed that high concentrations 

of oil stimulate lignin, being higher  (4.9 %)  in soil with 90 g kg-1  of crude oil,  increasing 

1 % with respect to the control (Figure 4a). On the other hand, the effect of evaluation time 

induced a positive response, reaching an increase of 4.3 to 5 % as plant age advanced (Figure 

4b).  
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Figure 4: Effect of crude oil on the soil (a) and exposure time (b) on the percentage of 

lignin in L. hexandra 

 
abcd Different letters indicate different values (P≤0.05, n=4). 

 

 

L. hexandra production 
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Table 3: Changes in young plants in the tillering stage, the aerial dry matter and the root 

dry matter of L. hexandra exposed to crude oil at 180 and 360 days 

Time/ 

Crude oil 

(g kg−1) 

Young 

plants in 

tillering 

stage 

% 

Aerial dry 

matter (g) 
% 

Root dry 

matter  

(g) 
% 

180 days 

0 

30 

60 

90 

360 days 

0 

30 

60 

90 

Contamination 

Without 

With 

Time (days) 

180 

360 

 

27±2.4 f 

52±5.1 e 

71±12.1 e 

108±4.2 d 

 

140±4.3 c 

191±6.9 b 

210±8.7 b 

265±17.8 a 

 

84 

150* 

 

65 

202* 

 

 

+92.6 

+163 

+300 

 

 

+36.4 

+50 

+89.3 

 

 

+78.6 

 

 

+210.8 

 

43.5±2.3 d 

42.2±2.5 d 

36.2±4.2 d 

32.2±5.3 d 

 

204.2±8.1 a 

188.6±9.3 b 

178.7±4.9 bc 

165.6±7.7c 

 

123.9* 

107.3* 

 

38.5 

184.3* 

 

 

−2.9 

−16.8 

−25.9 

 

 

−7.6 

−12.5 

−18.9 

 

 

−13.4 

 

 

+378.7 

 

2.7±0.2 d 

6.2±0.3 d 

7.0±1.4 d 

8.2±0.3 d 

 

19.5±2.1 c 

39.2±3.8 b 

43.5±5.3 b 

52.6±2.8 a 

 

11.1 

26.1* 

 

6.0 

38.7* 

 

 

+129.6 

+159.3 

+203.7 

 

 

+101 

+123.1 

+169.7 

 

 

+135.1 

 

 

+545 

The symbol % (+) represents an increase, and % (-) a decrease, of the aerial dry matter and root dry matter of 

young plants at d 180 and 360, compared to the values of the control treatment (0 g kg-1 of crude oil). 
abcde Different lowercase letters within each column represent different values (P≤0.05, n=4). *Statistically 

higher. 

 

Correlation of variables are presented in Table 4. 

 

 

Discussion 
 

 

Rhizobacterial population 

 

 

Reports indicate that the rhizosphere of grasses used for the removal of total petroleum 

hydrocarbons from soils contaminated with crude oil host intense microbial activity, 

including that of plant growth-promoting rhizobacteria(35,36). The significant increase in the 

Azotobacter population (0.361*) (Table 2 and 4) in the rhizosphere of L. hexandra is similar 
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to that reported in other studies evaluating the same grass exposed to 60-180 g kg-1 of total 

petroleum hydrocarbons(20) and Echinochloa polystachya K. exposed to 65.89 g kg−1 of total 

petroleum hydrocarbons(37). The increase in the Azotobacter population could be due to the 

adaptation of the bacterium through the secretion of extracellular enzymes essential for the 

initial degradation of high molecular weight substrates(38) such as petroleum hydrocarbons. 

Similarly, it may be an adaptation to a reduction in the availability of essential nutrients such 

as nitrogen due to the properties of crude oil, which tends to agglomerate in the soil(4;5). In 

addition, it has been shown that under stress conditions plants increase root exudation(39), 

which become a source of nutrients and stimulating substances for the growth of 

microorganisms(40). However, not all microorganisms can adapt quickly, probably because of 

the toxic hydrocarbons in crude oil, which make it difficult for some microbial species to 

grow and survive(41). In addition, the presence of oil can modify the physicochemical 

properties of the soil(4), generating unfavorable conditions for microorganisms(42). In contrast, 

the current study revealed that the population of Azospirillum and Pseudomonas decreased 

with increased crude oil, demonstrating the negative effects of this pollutant; at the same 

time, with the extension of time, the stimulation of both populations was promoted (0.778**, 

0.767**), indicating that the bacteria need some time to acclimatize and achieve significant 

growth. Similar results were reported in other investigations(1,7), where they found a 

significant increase of rhizobacteria over time in the rhizosphere of L. hexandra and 

Urochloa brizantha Hochst exposed to oil.  

 

 

Chemical composition of L. hexandra 

 

 

The present study showed increases in crude protein content in shoots of L. hexandra planted 

in soil with crude oil (0.551**) relative to the control. At d 180 and 360 at doses of 60 and 

90 g kg-1 of crude oil, the tendency is for the crude protein to increase with respect to the 

control, while at doses of 30 g kg-1 there was no statistical difference (Figure 1a). A similar 

effect was reported by Orocio-Carrillo et al(13), who found an increase in crude protein in L. 

hexandra exposed to 102 g kg-1 of crude oil. Likewise, the protein content in Simmodsia 

chinensis L. and Vigna unguiculata L. respectively has reportedly(43,44) increased due to the 

effect of crude oil in soil. Roa et al(45) report an increase in protein concentration in Triticum 

aestivum L. due to the effect of sulfur fertilization. Therefore, the increase in protein in this 

study could be due to the nitrogen and sulfur content present in the crude oil(46). On the other 

hand, crude protein is diluted as the age of the grass increases (−0.497**). It has been 

mentioned(47) that the increase in the age of the grass results in a decrease in protein, as dry 

matter production increases. In this regard, this study found a negative and highly significant 

relationship between crude protein and aerial dry matter (−0.564**). As the maturity stage 
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of grasses increases, so does the content of structural carbohydrates and lignin, while the 

protein content decreases(48). 

 

This study shows that the neutral detergent fiber at d 180 did not change in contaminated 

soils with respect to the control; however, at d 360, the tendency was to increase very slightly 

with high doses of crude oil (60 and 90 g kg-1), but at 30 g kg-1 there was no statistical 

difference compared to the control. On the other hand, neutral detergent fiber increased due 

to the effect of the evaluation time (0.832**). Similar tendencies were reported by other 

researchers(49,50), who evaluated the percentages of neutral detergent fiber of fountaingrass at 

different harvesting ages and observed an increase in its concentration of 5.5 and 17.9 % 

between day 30 and 167 d, respectively. It has also been mentioned(51) that, as forage maturity 

increases, the concentrations of neutral detergent fiber in stems and leaves augment, reducing 

the voluntary consumption of forages. 

 

The concentration of acid detergent fiber in this study shows that it increased at high doses 

of oil (60 and 90 g kg-1) with respect to the control at d 180, but at doses of 30 g kg-1 the 

response was not statistically different from that of the control. At d 360, the tendency was 

to decrease at doses of 60 and 90 g kg-1, while at doses of 30 g kg-1 there were no statistical 

differences in relation to the control. On the other hand, the concentration of acid detergent 

fiber augmented as the age of the grass increased (0.741**). Similar values were reported by 

Schnellmann et al(52) when evaluating the nutritional quality of Megathyrsus maximus Jacq., 

as they recorded values of 29.3 % at d 90 and 34.4 % at d 180. Similarly, Álvarez-Vázquez 

et al(50) found an increase of 40.36 % at d 33 and 58.5 % at d 180 when evaluating the 

chemical composition of Cenchrus sp. grass. Acid detergent fiber is reported to be an 

important component that regulates forage quality and is positively related to the crop’s age 

or stage of development, with forage quality declining as fiber becomes a predominant 

component(53). 

 

In the present study, one explanation for the increase in high doses of crude oil may be the 

mechanism of osmotic adjustment that favors the accumulation of compatible solutes, which 

are organic compounds that do not interfere with cell metabolism, even at high 

concentrations, and can act as antioxidants to minimize the impact of abiotic stress on the 

plant(24). Several studies have shown that lignin increases in response to various 

environmental stresses(26,27), playing a role in the adaptation of plants to their environment(54). 

On the other hand, the lignin content is stimulated (0.661**) as the age of maturity of the 

plant increases. Rosales and Pinzón(48) mentioned that, as the grass maturity stage increases, 

the proportion of cell wall components, including lignin, increases, reducing the digestibility 

of the grass. 
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L. hexandra production 

 

 

In pastures, the addition of crude oil to the soil has been reported to induce a significant 

reduction of plant dry matter(55). It should be noted that, at d 180, aerial dry matter production 

was reduced only by 2.9 % at a concentration of 30 g kg-1 of crude oil, compared to the 

control, demonstrating the high tolerance of the grass in these conditions; however, as the 

dose of crude oil in the soil increases (60 and 90 g kg-1), the percentage reduction increases 

both at d 180 and at d 360 with respect to the control. The negative impact of crude oil on the 

aerial dry matter of L. hexandra has also been reported(13,56). Crude oil leads to negative 

changes in soil properties such as reduced moisture absorption and retention capacity, water 

repellency and insufficient soil aeration(57,58), which consequently makes plant growth even 

more difficult. On the other hand, the production of young plants in the tillering stage and 

root dry matter were stimulated (0.465**, 0.362*). This behavior was also mentioned in other 

researches(13,56). The increase in these variables may indicate a strategy of L. hexandra to 

survive and adapt to soil contamination by crude oil. The increase of young plants in the 

tillering stage and root dry matter in oiled soils could be explained by the increase in soil 

organic carbon content due to the degradation of crude oil(18). Likewise, the increase in roots 

could be due to a response of reinforcing the root tissues in order to limit soil nutrient 

deficiency stress induced by crude oil(5). Studies have reported increased root biomass in soils 

treated with petroleum hydrocarbons(22).  

 

 

Conclusions and implications 
 

 

The effect of high doses of crude oil in the soil induces in the rhizosphere of L. hexandra 

high populations of bacteria of the Azotobacter group; however, it caused the inhibition of 

Azospirillum and Pseudomonas. On the other hand, crude oil is positively correlated with 

crude protein and lignin synthesis, playing a role in grass adaptation to its environment. 

Likewise, high doses of crude oil induced a positive response in the production of young 

plants in the tillering stage and root dry matter, which indicates a strategy developed by the 

grass to survive and adapt to oil contamination.  However, the chemical composition of the 

grass was affected by the age of harvest, in which the percentage of neutral detergent fiber, 

acid detergent fiber, and lignin increased, while the concentration of crude protein decreased. 

Therefore, even if the grass is able to adapt to the stress induced by crude oil, its protein 

content and, therefore, its nutritional value are affected, which can be detrimental to farmers 

and cause long-term deterioration of the affected property. 
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Table 4: Correlation of variables 

Parameter Time PJM ADM RDM CP NDF ADF Lignin AZP AZT PSE 

CO NS 0.465** NS 0.362* 0.551** NS NS 0.354* −0.558** 0.361* −0.372* 

Time  0.872** 0.987** 0.876** −0.497** 0.832** 0.741** 0.661** 0.778** −0.857** 0.767** 

PJM   0.798** 0.966** NS 0.860** 0.690** 0.739** 0.416* −0.614** 0.485** 

ADM    0.802** −0.564** 0.789** 0.737** 0.632** 0.826** −0.879** 0.829** 

RDM     NS 0.828** 0.581** 0.656** 0.474** −0.678** 0.454** 

CP      NS NS NS −0.627** 0.519** −0.641** 

NDF       0.646** 0.668** 0.520** −0.740** 0.576** 

ADF        0.635** 0.466** −0.530** 0.667** 

Lignin         NS −0.475** 0.369* 

AZP          −0.861** 0.743** 

AZT           −0.745** 

CO= crude oil; PJM= young plants in the tillering stage; ADM= aerial dry matter; RDM= root dry matter; CP= crude protein; NDF= neutral detergent fiber; 

ADF= acid detergent fiber; AZP= Azospirillum; AZT= Azotobacter; PSE= Pseudomonas. 

* P≤0.05. ** P≤0.01. NS= non significant. 

 

 

 


