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Abstract: 

One of the hallmarks of Mycobacterium bovis infection is cell death. The type of cell death 

occurring during the infection determines the persistence of mycobacterial diseases. The aim 

of this article is to provide a comprehensive review and draw the possible scenarios of cell 

death types in the pathogenesis of bovine tuberculosis. The current data suggest that: 1) the 

development of apoptosis and its different variants is related to mycobacterial control, 2) 

autophagy is a conserved mechanism that limits mycobacterium intracellular replication, 3) 

pyroptosis is an extreme mechanism that helps control M. bovis at the cost of damaging host 

tissue, and 4) necrosis will allow the escape and proliferation of mycobacteria. 

Keywords: Cell death, Bovine tuberculosis, Mycobacterium bovis, Apoptosis, Autophagy, 

Pyroptosis.  
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Introduction 
 

 

 

The way a cell dies plays a crucial role in physiological processes. In mycobacterial 

infections, some types of cell death have been cataloged as defense mechanisms of the host 

but also as consequences of the pathogen's virulence factors(1,2,3). The Nomenclature 

Committee on Cell Death (NCCD) 2018, proposes classifying the types of cell death based 

on the mechanistic and essential aspects of the process, categorizing the majority within the 

group of regulated cell death(4). Of this large group, some types have been reported in 

mycobacterial infections, for example, apoptosis(5-9), pyroptosis(10), ferroptosis(11), and 

necroptosis(12). 

 

Mycobacterium bovis (M. bovis) belongs to the Mycobacterium tuberculosis complex. This 

species is the causative agent of zoonotic tuberculosis and the main etiologic agent of bovine 

tuberculosis (bTB). M. bovis affects many animal species(13,14); therefore, it is a problem for 

public health and the livestock sector(15,16). 

 

M. bovis is mainly transmitted by air, through exhaled droplets from the respiratory system 

of infected animals. A cellular immune response is developed, which is considered the main 

immune mechanism against intracellular bacteria(17,18). The dinamics between, macrophages, 

neutrophils, fibroblast, dendritics cells, B cells, γδ T cells, CD4+, CD8+ lymphocytes, and 

pro-inflammatory cytokines such as tumor necrosis factor (TNF) and interferon gamma 

(IFN-γ), give rise to the formation of the characteristic defense structure against 

mycobacteria: the granuloma(19,20,21). 

 

Granulomatous lesions are characteristic of bTB, and are found mainly in lymph nodes and 

the lungs(22). Its development varies in different lymph nodes of the same animal(23) and in 

addition, there has been reported variation in the structural morphology of granulomas from 

calves and adults(24), therefore granulomas in bTB are considered to have a heterogeneous 

presentation. 

 

Cell death is one of the determining mechanisms in the formation and evolution of the 

granuloma that drives the development of the infection and presentation of the disease(25). As 
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a consequence of the persistent nature of M. bovis infection, several types of cell death may 

occur, highlighting apoptosis and necrosis(5-9,25). However, other modalities, such as 

pyroptosis and autophagy, may also play a role in the infection(10,26,27,28). This review aims to 

provide a comprehensive summary of the types of cell death that have been identified in M. 

bovis infection and highlight their impact on the host. To achieve this goal, we present the 

information divided in two main sections: 1) Pathogenesis and immune response in bTB and 

2) cell death pathways in bTB. 

 

 

 

Pathogenesis and immune response in bovine tuberculosis 
 

 

 

Bovine tuberculosis is transmitted by direct contact with infected excretion products (urine, 

saliva, milk, semen, uterine discharges) or mycobacteria present in exhaled droplets from the 

respiratory system of infected animals(29). The respiratory system is mainly affected, 

including the lungs and associated lymph nodes(24,30,31). Lesions in the digestive system have 

been related with transmission by ingestion of contaminated food(32), and transplacental 

transmission occurs in calves born with congenital infection(33). 

 

bTB can be subclinical for long periods, symptomatic (fever, weight loss, respiratory distress, 

and decreased milk production), or have an evolution towards a generalized presentation as 

a consequence of the lymphatic or hematogenous dissemination of the mycobacteria 

changing to the early and late phases of the infection(14). Factors such as the localization of 

the disease, the evolution of the primary lesion, mycobacterial virulence factor, bacterial 

concentration, development of granulomatous lesions and immunocompetence of the host, 

are determinants for the presentation of clinical symptoms(15,21,29,34,35). 

 

The immune response plays a crucial role in the evolution of the infection in acute and 

chronic phases(36). In particular, the cell-mediated responses are vital(37). Since the respiratory 

system is one of the most affected by M. bovis, transcriptional and functional studies have 

been carried out in different cell populations of this system. 

 

Alveolar macrophages are among the first cell populations infected by inhaled mycobacteria; 

therefore, they have been studied using different approaches. Transcriptomic analyses have 

revealed that the changes in gene expression are contrasting. For instance, a decrease in the 

expression of genes relevant to the recognition of M. bovis(37,38), and a greater polarization of 

macrophages towards a more permissive-replicative M2 phenotype(39) have been reported. 

On the other hand, genes that encode chemokines, recognition receptors and 
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proinflammatory molecules showed an increase upon infection with M. bovis(40,41). And 

finally, this approach has also identified genomic variation related to both 

susceptibility/resistance to infection(42). Another study using composition and lipid 

metabolism analysis, identified significant differences in the lipid group between M. 

tuberculosis related to the formation of foamy macrophages and M. bovis with the inhibition 

of autophagy(43).  

 

These findings related to the protective and non-protective function of alveolar macrophages 

against infection, accompanied by a response dependent on mycobacterial species, 

demonstrate the determining role played by the mycobacteria/alveolar macrophage 

interaction both in the acute phase and in the evolution of the infection. 

 

Neutrophils are another cell population important in mycobacterial infection(44). Bovine 

neutrophils function as regulatory cells mainly in the innate immunity of clinical healthy 

cattle, but also in infected conditions(45). For instance, bovine neutrophils exposed to M. bovis 

increased phagocytosis, cellular activation, secretion of pro-inflammatory cytokines and 

intracellular replication(46). These results suggest that M. bovis infection could modulate the 

response in bovine neutrophils.  

 

β-defensin-5 is an antimicrobial peptide stored in bovine macrophages and neutrophil 

granules. Incubating recombinant β-defensin-5 with M. bovis evidenced its time-dependent 

antimicrobial effects; this peptide inhibited growth by 88 % and disrupted the mycobacterial 

wall at 72 h of incubation(47). The immunoprotective role of recombinant β-defensin-5 was 

also demonstrated. Recombinant β-defensin-5 from bovine neutrophils was used in the 

immunization of mice, which were then infected with M. bovis. The results showed a 

reduction in inflammatory tissue and in the bacterial load in the lung and spleen, 

demonstrating the potential of its immunoprotective function(48).  

 

The changes in the structure of neutrophil nuclei have been suggested as a complementary 

diagnostic method for bovine tuberculosis. In human neutrophils exposed to serum from 

Purified Protein Derivative from Mycobacterium (PPD+) cows, after 3 h, pyknocytosis was 

the most common change observed in cell nuclei(49). Additionally, specific pattern of 

expression of IFN-inducible transcriptional genes, myeloperoxidase(MPO) and pentraxin-

related protein pentraxin-inducible protein (PTX3) genes, from neutrophils showed their 

potential as diagnostic tools for M. bovis infection in cattle(50). Despite the modulatory effect 

that M. bovis apparently exerts on neutrophils, the antimicrobial findings of some of its 

intracellular molecules evaluated in a recombinant manner, could represent a field of research 

for biotechnological development with the potential for application in diagnosis and 

therapeutics. 
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Considering the importance of dendritic cells (DCs) in innate and adaptive immunity, some 

research groups have studied their response against M. bovis infection. A comparative 

analysis between bovine DCs and macrophages, both infected with M. bovis, identified lower 

production of nitric oxide (NO) and up to 10 times lower secretion of pro-inflammatory 

cytokines (IL-1𝛃 and TNF-α) in dendritic cells compared to macrophages. Moreover, DCs 

had a lower antimicrobial response to IFN-γ than bovine macrophages(51). NO was also 

measured in murine DCs exposed to M. bovis and M. bovis BCG; the results showed lower 

production of NO in the population infected with M. bovis compared to the one infected with 

BCG; however, NO production increased significantly when adding IFN-γ(52). Overall, these 

results suggest that DCs from these two species are permissive to M. bovis infection; 

however, IFN-γ only rescued NO production in murine DCs, evidencing a species-specific 

response.  

 

Another study addressed the influence of bone marrow-derived DCs on the T lymphocyte 

profile in M. bovis infection in murine. Analyses of transcription levels, histopathology, and 

secretion molecules were carried out ten times during 56 d post-infection. The main findings 

were as follows: 1) Influence of high levels of prostaglandin-2 (PGE2) and cyclooxygenase-

2 (COX2) mRNA on the cytokine profile (IL-17/IL-23); 2) Naïve LTCD4 were stimulated 

for differentiation towards Th17 and Treg, and 3) High bacterial load and tissue damage was 

observed in M. bovis infection. Considering these results, the researchers suggested that the 

induction of the PGE-2/COX-2 axis during infection with M. bovis contributes to sustained 

over-inflammation and could be related to the higher tissue damage(53). The greater 

permissiveness, higher response to external stimuli, and differentiation of T lymphocytes 

under M. bovis infection, could represent a key mechanism of very early immune modulation 

by the mycobacteria.  

 

Lymphocyte function is important in M. bovis infection because TCD4+ lymphocytes 

produce IFN-γ that induces the microbicidal activity of macrophages and CD8+ T cells have 

also shown lytic activity on infected cells(54,55,56). A recent transcriptomic study compared 

whole blood from uninfected cattle and cattle experimentally infected with M. bovis at 8 and 

20 wk post-infection. This study found that M. bovis infection upregulated chemokine genes 

such as monocyte chemoattractant protein 2 and chemokine (C-C motif) receptor 8 (CCR8), 

which are related to chemotaxis of monocytes and T lymphocytes, respectively, and 

downregulated genes related to class I antigen presentation and chemokines of neutrophils. 

The granzyme B gene was notably upregulated in the early and late stages of the infection, 

suggesting it may function as an infection biomarker. Since the genetic profile found high 

expression of cellular chemotactic genes and granzyme B, these are likely the most relevant 

defense mechanisms during the infection. In addition, the sustained transcription of 

granzyme B suggests that M. bovis antigens are being recognized by the population of 

cytotoxic T lymphocytes(57). 

 



Rev Mex Cienc Pecu 2025;16(1):147-178 
 

152 

Although IFN-γ is a key cytokine in M. bovis infection, other circulating cytokines have been 

related to specific T lymphocyte populations. For example, T CD4+ lymphocytes and γδ T 

cells were identified as the main sources of IL-17 and IL-22, respectively, and a small 

population of γδ T cells produced both cytokines(58), besides a study in an experimental 

infection model found that the development of granulomas was directly related to increased 

IL-17 expression and decreased IL-22 expression. Therefore, the authors proposed IL-17 as 

a possible biomarker of bovine tuberculosis(59). 

 

γδ T cells are particularly interesting, due to their production of IL-17 and also because this 

population is highly present in the circulation of bovines (up to 70 % in calves) compared to 

other species like humans and mice(60). The functions of γδ T cells in bovines include antigen 

presentation, IFN-γ production, cytotoxic activity, and regulation of the immune response 

has been reported(20,61). The genes expressed in subset WC1.1/T of γδ T cells from cows 

naturally infected with M. bovis were related to cell proliferation, activation, chemotaxis, and 

cytotoxic activity, evidencing their function on inflammation in bTB(62). A wider expression 

profile was described by quantifying mRNA from circulating γδ T cells and advanced-stage 

lung and lymph node granulomas. The analysis identified IFN-γ and IL-17 as the genes with 

the greatest differential expression between circulating γδ T cells of infected vs uninfected 

cattle. Furthermore, CCL2, IL-17, IL-10, and IFN-γ showed the greatest expression in the γδ 

T cells surrounding the granulomas(63). Overall, the production of chemoattractants, pro-

inflammatory, and anti-inflammatory factors by circulating γδ T cells and those located in 

the infection site demonstrates their importance in the initial response and in maintaining the 

structure of the granulomatous lesion. 

 

The series of cellular and molecular events induced by infection leads to the formation of 

granulomas, which are considered defense mechanisms against mycobacterial infections(64). 

In bTB, granulomas are classified into four stages(65) that have been used as a study 

reference(21,30). Previous work showed that granulomatous lesions in lung and mediastinal 

lymph nodes from naturally infected calves were devoid of capsules and displayed more 

necrosis and mycobacterial antigens than granulomas from adult cows(24). In addition, 

granulomatous tissue from calves showed more CD3+ positive cells and higher 

concentrations of TNF-α, IFN-γ, and inducible nitric oxide synthase (iNOS), as well as fewer 

γδ T cells compared to granulomas of adult cattle(66). These data suggest that age is a 

determining factor in the pathogenesis and immune response to bTB. 

 

The humoral response to bTB was evaluated in 6-mo-old calves infected with different strains 

of M. bovis. The results identified antibodies against the antigens early secretory antigenic 

target (ESAT-6), culture filtrate protein (CFP10), and protein MPB83; however, the response 

was highly variable among animals and was predominant at week 18 post-infection. 

Moreover, antibodies directed against MPB83 remained constant from week 4 post-infection, 

regardless of the strain used(67). MPB83, MPB70, and ESAT-6/CFP10 were also evaluated 
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in a comparative serological characterization performed in cattle, bison, and buffaloes 

naturally infected with M. bovis. In cattle, the predominant response was towards 

MPB70/MPB83; in bison, the response was similar towards the two antigenic groups; and in 

buffalo, the response was very low. Unlike ESAT-6/CFP10, which exclusively induces the 

production of IgG antibodies, MPB70/MPB83 were recognized by IgM and IgG antibodies. 

These results highlight the heterogeneity of the humoral response between species. 

Furthermore, the researchers hypothesized that M. bovis antigens induce the two antibody 

isotypes by reactivation at different times throughout the disease, which would explain the 

simultaneous presence of IgG and IgM(68).  

 

Although most immunological studies in bovine tuberculosis have been directed to evaluate 

the response against infection using different strains of M. bovis, co-infection with other 

microorganisms has also been reported. For example with viruses(69), with other bacteria like, 

Brucella(70), and parasites(71-73). In most of the works where co-infection with M. bovis is 

reported, a statistical positive correlation with greater susceptibility and severity of bTB is 

suggested, however, studies with a functional approach at the cellular, molecular and tissue 

levels are necessary to elucidate the immunological dynamics and the effect on the evolution 

of bTB in the same host. 

 

The diversity of immunological responses to M. bovis in vitro and in vivo models and the 

capacity of M. bovis to infect around 85 animal species(74) highlight its high capacity for 

adaptation and development of different immune evasion mechanisms. Considering all of the 

above, it suggests that these key variables strongly influence the outcome of the infection: 1) 

The age and breed of cattle; 2) The immune response to the infection, i.e., the greater 

permissiveness of some cells, the cell populations involved, the type of cell death, maturation 

stage of granulomatous lesions, and co-infection. Studying these variables through a 

comprehensive approach could generate more systematic knowledge to understand the high 

heterogeneity of bovine tuberculosis. 

 

 

 

Cell death pathway in bovine tuberculosis 
 

 

 

Apoptosis or programmed cell death 

 

 

Apoptosis consists of a series of molecular processes known as programmed cell death(26). 

This concept was previously reported in silk moths(75), and the term apoptosis was only used 
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until 1972(76). Research in this field has identified the genes involved in its initiation and 

regulation, which led to the award of the 2002 Nobel Prize in physiology(77). Currently, it is 

known that caspases (cysteine-aspartic acid proteases) are the initiating proteins of apoptosis 

in humans(78).  

The morphological changes observed during apoptosis are cell shrinkage and a decrease in 

the nucleus size, characterized by Deoxyribonucleic acid (DNA) fragmentation, chromatin 

condensation, and detachment of cells from the surrounding tissue. Apoptotic bodies are also 

formed; these are phagocytosed by cells that arrive at the site due to the exposure of 

phosphatidylserine in the apoptotic cell membrane(79). Depending on the stimulus and the 

balance between an extensive group of pro- apoptotic and anti-apoptotic molecules, apoptosis 

can take two pathways: the intrinsic pathway (triggered by perturbations of the cell 

microenvironment, in particular, the mitochondria and endoplasmic reticulum) and the 

extrinsic pathway (induced by disturbances of the extracellular microenvironment and 

mediated by receptors)(79). 

 

Some stimuli that activate the intrinsic mitochondrial pathway are hormones, radiation, 

toxins, hypoxia, and viral infections. These stimuli affect the permeability of the 

mitochondrial intermembrane(80), resulting in the release of pro-apoptotic proteins and 

cytochrome C to the cytoplasm. The interaction between apoptosis protease-activating 

factor-1 (Apaf-1) and caspase-9 forms the apoptosome, which activates the effector caspase 

3. Furthermore, the Second Mitochondrial Activator of Caspases/Direct IAP-Binding Protein 

with Low pI (SMAC/DIABLO) inactivates an inhibitor of apoptosis factor (IAP). All 

molecular dynamics are regulated by proteins of the BCL-2 family of pro-apoptotic or anti-

apoptotic nature, which are found in the cytoplasm and the outer membrane of the 

mitochondria(81,82).  

 

Endoplasmic reticulum (ER) stress is associated with apoptosis. ER stress may be caused by 

loss of intracellular calcium balance, accumulation of misfolded proteins in the lumen of the 

ER, and disturbed protein transport to the Golgi apparatus(83). These conditions activate the 

unfolding protein response (UPR) system, composed of proteins such as inositol-requiring 

protein-1 (IRE1α) and protein kinase RNA (IPK-R)-like ER kinase (PERK), which activate 

accessory molecules or interact with each other to either restore balance or induce cell 

death(84). During a prolonged period of ER stress, the expression of pro-apoptotic proteins 

increases, and they interact with other molecules to promote apoptosis. For example, IRE1α 

activates apoptotic signaling-regulating kinase-1 (ASK1), which initiates a cascade of 

reactions that lead to the activation of pro-apoptotic molecules (Bim) and inactivation of anti-

apoptotic molecules (Bcl-2)(85,86,87). 

 

The extrinsic pathway of apoptosis is induced by receptor-ligand interactions. The most 

important ligands and receptors for apoptosis belong to the Tumor Necrosis Factor 

superfamily. Ligands can interact with one or more receptors, and most receptors are 



Rev Mex Cienc Pecu 2025;16(1):147-178 
 

155 

transmembrane proteins with an extracellular N-terminal that interacts with the ligand and 

an intracellular C-terminal that has a death domain(88). The interaction with this death domain 

can activate effector caspases through several pathways. For example, the FAS/FASL 

interaction along with adapter proteins can bind to pro-caspases 8 and 10 and subsequently 

activate effector caspases by autocatalysis(89) or form protein complexes that activate or 

inhibit caspases, as occurs with the TNF receptor(90,91).  

Apoptosis is an essential mechanism to maintain cellular homeostasis(92-98) and also 

represents a defense mechanism in the immune response, especially against intracellular 

pathogens(99).  

 

 

 

Role of apoptosis in Mycobacterium bovis infection 

 

 

 

In mycobacterial infections, apoptosis has been associated with reduced bacterial spread and 

viability(1,2). However, virulent mycobacterial strains and antigens may inhibit apoptosis in 

cells infected previously(2,3).  

 

 

 

Complete mycobacteria 

 

 

 

One of the first publications reporting apoptosis in M. bovis-infected bovine macrophages 

showed that cell death occurred as early as 4 h post-infection using different multiplicities of 

infection (MOI). The authors concluded that apoptosis was time and MOI-dependent(5). 

Using the same cell model, apoptosis was enhanced by IFN-γ/LPS and diminished by 

blocking TNF-α. In addition, in the presence of IL-10, mycobacterial intracellular replication 

was inversely related to apoptosis, suggesting that apoptosis plays a protective role against 

infection(6). 

 

The Rodriguez group compared mice previously infected with attenuated vs virulent M. bovis 

strains. They identified that the virulent strain had a greater capacity to inhibit apoptosis in 

alveolar macrophages. In addition the apoptosis was decreased by IL-10 and increased by 

TNF-α(7). The previous findings were carried out in vivo and in vitro in macrophages infected 

with M. bovis. This study demonstrates that mycobacteria modulate apoptosis through 
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cytokine production, level of virulence, and exposure dose. In Table 1, there are some of the 

most relevant findings of apoptosis in infection with the main causal agent of bTB.  

 

Natural resistance against a disease is defined as the ability of the host to resist the 

development of a disease after the first exposure to the pathogen and without prior 

immunization(8). Natural resistance to mycobacterial infections in cattle has been reported by 

several authors. For example, the Esquivel-Solis group(9), compared apoptosis and 

microbicidal activity in resistant and susceptible bovine macrophages infected with M. bovis. 

The findings indicate that apoptosis increased in macrophages with high NO levels, 

suggesting a relationship between apoptosis and microbicidal activity in the resistant 

phenotype(9). These results coincide with those obtained from resistant macrophages infected 

with M. tuberculosis(100,101). The effect of IL-4 was studied in bovine macrophages in both 

phenotypes. The results show a decrease in the expression of pro-inflammatory genes and a 

lower tendency towards apoptosis in resistant macrophages, evidencing that alternative 

activation by IL-4 increased susceptibility to infection in resistant macrophages(102). The 

relationship between NO production, apoptosis, and intracellular survival of mycobacteria 

was also evaluated in dendritic cells in mice. Apoptosis (DNA fragmentation and caspases 

3, 6 and 9) and bacterial concentration were quantified in the absence or presence of an iNOS 

inhibitor. Results from this study showed that: a) the population infected with BCG showed 

more apoptosis compared to M. bovis, b) in the presence of the inhibitor, apoptosis was 

significantly reduced in both infected populations, and c) M. bovis survived better than BCG 

in DCs. These results suggest that the reduced production of NO by dendritic cells due to the 

infection with M. bovis modulates the development of apoptosis and increases the possibility 

of mycobacterial survival(52). These results highlight the role of nitric oxide in apoptosis in 

the early phases of infection. 

 

Several research groups have focused on specific intracellular targets to understand the 

mechanisms and organelles involved in apoptosis. Vega, et al(103) in 2007 suggested an 

association between apoptosis and the nuclear translocation of Apoptosis-Inducing Factor 

(AIF) and mitochondrial membrane depolarization in macrophages exposed to an M. bovis 

protein extract(103). This prompted the investigation of other apoptosis-associated 

components, for example, the impact of mitochondrial permeability on DNA fragmentation 

and mycobacterial viability in bovine macrophages infected with M.bovis. DNA 

fragmentation decreased independently of caspase activity when mitochondrial permeability 

was inhibited. Furthermore, the translocation of AIF and Endonuclease G (Endo-G) to the 

nucleus, measured by immunoblot, increased 15 and 43 times, respectively, and the viability 

of the intracellular mycobacteria increased by 26 %(104). These results support the idea that 

the translocation of Endo-G to the nucleus is also involved in DNA fragmentation as a result 

of M. bovis infection by altering mitochondrial permeability. The identification of molecules 

such as Endo G and AIF in the nucleus and the decreased intracellular mycobacterial viability 

in the absence of activated caspases, suggest that caspase activation is not required for DNA 
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fragmentation and reveals the existence of different mechanisms in the development and 

modulation of apoptosis, especially during infection. 

 

Mitochondrial stress induced by M. bovis infection was also evaluated in THP-1 cells. It was 

found that apoptotic caspases negatively modulate IFN-β production by reducing the nuclear 

translocation of p-IRF3 (Interferon Regulatory Factor 3)(105). This represents a beneficial 

scenario for the host since a lower IFN-β in M. bovis infection has been associated with a 

better prognosis(106). 

 

The endoplasmic reticulum stress induced by mycobacterial infection was investigated in 

murine macrophages previously infected with M. bovis. This study showed a higher 

intracellular survival of mycobacteria upon adding an ER stress inhibitor, which directly 

modulated the percentage of apoptotic cells(107). The relationship between apoptosis and the 

functionality of the mitochondria and ER and its impact on intracellular mycobacterial 

viability highlights the protective effect of apoptosis against infection(108). However, these 

organelles and pathways can also become targets for mycobacteria modulation. 

 

Activated caspases have been used as the only marker of apoptosis in mycobacterial 

infections(109). Nevertheless, caspase-independent apoptosis has been identified in cattle and 

buffaloes infected with M. bovis(103,110). Furthermore, since apoptosis limits the intracellular 

growth of mycobacteria, the absence of caspase activation could represent a mechanism of 

evasion of cell death by M. bovis(107). 

 

Most approaches to investigating apoptosis in mycobacterial infection have been carried out 

in cell models (mainly macrophages), allowing the study of the protective role of apoptosis 

in the acute phase. However, due to the persistent nature of the infection, apoptosis should 

also be studied in the chronic phase of mycobacterial infection. The Cherdantseva group 

reported that apoptotic cells corresponded to approximately 11 % of cells in lung granulomas 

of mice infected with M. bovis-BCG after 180 days of infection. These data suggest that, 

although apoptosis is induced at the tissue level, it is insufficient to eliminate the 

mycobacteria during the development of the pathological process(111). 

 

 

 

Proteins from M.bovis 

 

 

 

The dual role of apoptosis in mycobacterial infection has been observed in studies using 

individual M. tuberculosis antigens, in which the antigens are classified as pro-apoptotic or 
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anti-apoptotic. These studies suggest that mycobacteria modulate the cell death mechanism 

through dynamics of antigenic expression(2). In this context, to identify specific M. bovis 

apoptosis-inducing proteins, bovine macrophages were exposed to different protein extract 

fractions. Caspase-independent apoptosis was induced by two M. tuberculosis recombinant 

proteins, hsp70 and heparin-binding haemagglutinin (HBHA), which have high homology 

with M. bovis in bovine macrophages(112). In this regard, efforts have been made to determine 

the protein profile in the protein extracts of M. bovis. Using mass spectrophotometry, 

MPB70, MPB83, and 60-kDa chaperonin were identified as the main protein candidates that 

induce caspase-independent apoptosis(28).  

 

M. bovis and M tuberculosis have a high genomic homology(113). Therefore, investigating the 

modulatory effect exerted by highly homologous proteins in the two species could identify 

the new mechanisms in cell death. This knowledge would allow to understand the 

particularities of the infection and the general pathogenesis of bTB. 

 

All together, the above mentioned results indicate that apoptosis is a multifactorial event 

involving characteristics of the bacteria (such as virulence, time and multiplicity of infection) 

and intrinsic characteristics of the affected host. However, despite the effect of these multiple 

variables, apoptosis and intracellular growth of mycobacteria in bovine macrophages are 

inversely correlated, which suggests that apoptosis in M. bovis infection represents a host 

defense mechanism. 

 

 

 

Necrosis or accidental cell death 

 

 

 

The term necrosis comes from the Greek "necro," which means corpse or death and “osis”, 

which means condition or state. Necrosis was used to describe the morphological death of 

cells resulting from infection, cell damage, noxious stimuli, or mechanical damage; therefore, 

necrosis was thought to be due to abrupt changes leading to accidental cell death(114). 

Pathological diagnosis evaluates macroscopic and microscopic features in the affected tissue 

and classifies necrosis as coagulative, fibrinoid, hemorrhagic, and caseating(115).  

 

In M. bovis infection, necrosis is present in the advanced stages of granulomatous lesions(65). 

In addition, unregulated necrosis has been associated with a higher spread of mycobacterial 

infection(116). An analysis of granulomas from cattle naturally infected with M. bovis showed 

large necrotic areas with central calcification, no connective tissue capsule, and few giant 

cells. Necrosis was the predominant cell death observed, and it was accompanied by more 
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mycobacterial antigens, which was mainly observed in calves(24). Moreover, inducing 

necrosis using hydrogen peroxide in M. tuberculosis-infected macrophages favors the escape 

of the bacteria to the extracellular medium without affecting its viability(117). In addition, 

other necrosis induction assays allow the exit and proliferation of mycobacteria(118) .  

 

 

 

Different types of regulated cell death 

 

 

 

In recent decades, biochemical and molecular advances have enabled the discovery of some 

types of necrosis that are not accidental, rather, they follow regulated signaling pathways that 

produce a necrotic morphology(99,100,119,120). The description of these signaling pathways has 

helped define the diverse pathways of cell demise that lead to necrotic cell death. Among the 

different types of necrotic cell death are necroptosis, pyroptosis, among 

others(99,101,102,103,119,121,122,123). 

 

 

 

Pyroptosis 

 

 

 

The term pyroptosis is derived from the Greek “pyro” (fire, fever) and “ptosis” (falling)(104). 

Pyroptosis was first described in Salmonella and Shigella in vitro infection models, in which 

caspase 1 initiated cell death(104,105,106,124,125,126). Pyroptosis is an inflammatory cell death 

classically characterized by the inflammasome, caspase 1, gasdermin D (GSDMD), and the 

release of IL-1β and IL18 (Figure 1). 
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Figure 1: Routes of induction of pyroptosis by Mycobacterium bovis 

 
The diagram shows the ability of M. bovis and mycobacterial proteins to activate NLRP3 and AIM2 

inflammasomes. The activation of the NLRP3 inflammasome is initiated through pattern-recognition 

receptors and then by multiple stimuli such as the generation of reactive oxygen species, potassium efflux, or 

lysosomal components. Activation of the AIM2 inflammasome is initiated by bacterial DNA recognition. The 

assembly of the inflammasome leads to the maturation of IL-1β and the cleavage of gasdermin, forming 

gasdermin D which damages the cell membrane and results in necrotic cell death. This figure was created 

using BioRender.com. 

The inflammasome, which becomes activated in pyroptosis, consists of multiprotein 

structures including a receptor of the NLR (nucleotide-binding oligomerization domain-like 

receptors) or AIM myeloma 2 (AIM2)-like receptors families, as well as the ASC (Apoptosis-

associated speck-like protein containing a CARD) and pro-caspase 1(107,108,127,128). However, 

less frequently, pyroptosis can be activated by an alternative pathway. Activation of the 

inflammasome leads to the activation of inflammatory caspases (caspase-1,-4,-5 in humans 

and caspase-1 and -11 in mice) and the cleavage of the interleukin-1 family and GSDMD. 

The active GSDMD can assemble to form pores in the cell membrane and generate an 

osmotic imbalance that leads to cell death under an inflammatory environment(109,110, 129,130). 

M. bovis can induce pyroptosis in macrophage cells and macrophage-derived cell lines (Table 

1). The strain of the bacterium, the multiplicity of infection, and the time after infection are 

among the factors that favor pyroptosis(10,131,132,133). The main mechanisms that induce 

pyroptosis are related to the canonical activation of inflammasomes (Figure 1). NLRP7, 

which recognizes bacterial glycoproteins; AIM2, which recognizes double stranded DNA; 

and NLRP3, which is activated by various signals, such as potassium efflux, ROS, 

extracellular ATP, pore-forming toxins, and mediate pyroptosis associated to M. bovis 

infection(111,112,113,131,132,133). The activation of inflammasomes affects the production of IL-

1β, IL-18, and IL-33, generating an inflammatory environment that helps control the 

infection produced by mycobacteria(132). 
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Inflammasome NLRP3 activation requires two signals and generates an inflammatory 

environment. Stimulation of macrophages with LPS increases IL-1 β and nitric oxide, which 

may limit the intracellular growth of mycobacteria(9,10). Activating the inflammasome by M. 

bovis-infected bovine macrophages decreases the intracellular growth of mycobacteria(10). 

The inflammatory environment generated by pyroptosis can regulate the proliferation of 

bacteria, recruiting immune cells that help control bacterial infections. However, pyroptosis 

can cause tissue damage, therefore, it represents a strong mechanism that some host cells 

have to control bacterial intracellular growth. Of note, there is currently no information on 

which bacteria strains commonly induce pyroptosis. It is also unknown whether bacterial 

growth is controlled or whether some bacteria induce this type of cell death to escape from 

the cells and infect the surrounding tissues(12,134).  

 

 

 

Autophagy 

 

 

 

The term autophagy is derived from the Greek “auto” (self) and “phagen” (to eat). 

Autophagy is a highly conserved pathway that degrades cellular components using 

lysosomes(135). Autophagy is a regulated mechanism that allows cells to survive under 

nutrient deprivation or adverse conditions. However, autophagy can also cause cell death 

(autophagy-cell death dependent). This mechanism can occur concomitantly with another 

type of cell death, such as apoptosis , or start as autophagy and trigger apoptosis(136). 

 

Autophagy has been shown to limit intracellular bacteria. Some of the molecules involved in 

this process are myeloid-related protein 8/14 and interferon-γ inducible protein 204 (IFI204) 

that induces autophagy in peripheral blood mononuclear cells and THP1 cells in a ROS-

dependent manner, which inhibits the intracellular growth of Mycobacterium BCG (Table 

1)(137). Moreover, IFI204 is a DNA sensor that activates the innate immune response, 

including autophagy and interferon-β production (IFN-β). IFI204 proteins are involved in 

IFN-β responses by recruiting STING to activate TBK-1-IRF3 pathways. Induction of 

autophagy by IFI204 induces phosphorylation of TBK-1 to inhibit M. bovis survival in 

macrophages(138).  

 

Importantly, M.bovis can evade autophagy. One of the mechanisms consists in the specific 

inhibition of autophagy responsible for the control of intracellular organisms (xenophagy), 

for example, through the activation of the PINK1-PRKN/Parkin indicating pathway involved 

in mitophagy, which generates a competition of both pathways for p-TBK1 leading to a 
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decrease in xenophagy and the survival of the mycobacteria(139). The role of the microRNA 

miR-199a was evaluated in macrophages derived from bone marrow, lung, and spleen of M. 

bovis-infected mice. The infection increased the expression of miR-199a, and this suppressed 

autophagy by blocking phagolysosome maturation through the interaction with TANK 

binding Kinase 1. These changes led to an increase in intracellular survival of the 

mycobacteria. These results provide a mechanism for M. bovis to evade elimination(137). 

 

Although the development of autophagy participates in maintaining cellular balance, it may 

also function as an innate immune response mechanism that limits the growth of intracellular 

bacteria. In infections with M. bovis, autophagy is induced by low-virulence bacteria, 

suggesting that M. bovis may also modify processes involved in sustaining cellular 

homeostasis(140,141). 

 

 

 

Conclusions 
 

 

 

Regardless of the influence of different variables (such as virulence, time, species, and the 

host resistance phenotype) on apoptosis, experimental results suggests that cell death by 

apoptosis helps to control bacterial growth.  

The bacterial inhibitory effect on apoptosis, the redirection of autophagy, and the induction 

of inflammatory cell death such as necrosis and pyroptosis may be bacterial mechanisms to 

evade the host immune response.  

 

Although experimental conditions allow the detection of a specific type of cell death, the 

simultaneous activation of multiple types of cell death, known as PANoptosis, has also been 

observed in M. tuberculosis infection. This scenario opens the possibility of studying M. 

bovis infection in a global manner that considers all experimental variables and phases of the 

different cell death types. 

 

The high adaptability of M. bovis and the key role of cell death in immune activation highlight 

the need for more studies on regulated and non-regulated cell death. These studies will 

increase the understanding of bovine infection and aid in developing new strategies to 

counteract bovine tuberculosis. 

 

The most important points of this review can be numbered in: 1) Cell death by apoptosis 

helps to control bacterial growth. 2) Autophagy is a conserved mechanism that limits 

mycobacterium intracellular replication. 3) Pyroptosis is an extreme mechanism that helps 
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control M. bovis at the cost of damaging host tissue. 4) Necrosis will allow the escape and 

proliferation of mycobacteria. 
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Table 1: Cell death in Mycobacterium bovis infection 

Strain Protein 
+Target  

molecule 

Evaluation 

model 

Mycobacterial 

load* 
Remarks Reference 

Apoptosis 

M. bovis 

Wild type 

 

--- Chromatin 

condensation, 

and fragmentation 

DNA 

Macrophages derived 

from bovine 

monocytes 

 

ND Apoptosis induced for 

M. bovis infection 

(5) 

M.bovis 

ATCC  

35723 

--- Mono and 

oligonucleosomes in 

cell lysates 

Macrophages derived 

from bovine 

monocytes 

Decreased Apoptosis, enhanced for IFN-γ 

and diminished for IL-10 

(6) 

M.bovis 

9926 

 

--- DNA 

fragmentation 

Macrophages(R) 

derived from bovine 

monocytes 

Decreased Increased apoptosis in resistant 

macrophages 

(9) 

M.bovis 

C68004 

 

--- Caspases 3 and 9 Murine macrophages 

and THP-1 cells 

ND Negative modulation of apoptotic 

caspases on IFN-β 

(105) 

M. bovis 

ATCC 

 

--- Annexin V Macrophages derived 

from BALB/C mice 

Decreased Virulent strain has a greater 

capacity to inhibit apoptosis 

(7) 

M.bovis 

Beijing 

--- Caspases 3 and 9 Murine macrophages Decreased M. bovis-induced apoptosis 

depends in part on endoplasmic 

reticulum stress 

(107) 

M.bovis  

AN5 

--- DNA 

fragmentation 

Macrophages derived 

from bovine 

monocytes 

Decreased Translocation of Endo G to the 

nucleus in M. bovis-infected 

macrophages 

(104) 

164 
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M.bovis 

9926 

 

Protein 

extract 

 

Chromatin 

condensation, 

fragmentation 

DNA and caspase 3, 

8 and 9 

Macrophages derived 

from bovine 

monocytes 

 

ND Translocation of AIF to the 

nucleus in M. bovis-infected 

macrophages 

(103) 

M.bovis 

AN5 

 

Protein 

extract 

DNA fragmentation 

and caspase 3 

Macrophages 

derived from bovine 

monocytes 

ND Caspase-independent cell death by 

hsp70 and HBHA proteins 

(112) 

Pyroptosis and cell Death related with inflammasome 

M. bovis 

Beijing 

--- AIM2 inflammasome 

markers, LDH 

released 

J774A.1 macrophage 

cultures and bone-

marrow derived 

macrophages 

(BMDMs) 

ND The activation process requires 

cytoplasmic potassium efflux, 

mycobacterial internalization. 

(132) 

M. bovis 

Beijing  

--- LDH release, 

NLRP7, IL-1β 

THP-1 cells 

 

ND NLRP7 is uniquely stimulated by 

microbial acetylated lipopeptides 

(133) 

M. bovis 

BCG strain 

Moreau 

--- Caspasa-1, LDH 

release, IL-18, IL-1β 

Human mononuclear 

cells 

ND Induction of IL-1β but not of IL-

18, induces cell death with 

membrane damage 

(142 )  

M.smegmatis 

transfected 

with 

sequence M. 

bovis 

PPE13 NLRP3 

inflammasome, 

markers 

J774A.1, BMDMs 

and THP-1 

Decreased Enhanced-IFN-γ and 

diminished-IL-10 

(143) 

M. bovis 

AN5/CFPE 

--- LDH release, 

NLRP3, IL-1β, PI 

 

Macrophages derived 

from bovine 

monocytes 

Decreased Activation of NLRP3 

inflammasome and gasdermin D 

cleavage 

(10) 

165 
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Autophagy 

M. bovis 

BCG 

MRP8/14 Flow cytometry, LC3 THP-1 ND MRP8/14 promoted autophagy in 

a ROSdependent manner 

(140) 

M. bovis 

C68004 

strain  

 

 

 

M. bovis 

BCG 

 

 

M. bovis 

C68004 

strain 

PP2Ac 

 

 

 

 

 

LRG-47 

 

 

 

 

—--- 

LC3, AMPK 

pathway 

 

 

 

 

LC3, Beclin-1, 

 

 

 

LC3, HSPD1,  

LAMP-1 

Murine macrophages 

(BMDM and 

RAW264.7) 

 

 

 

RAW264.7 

 

 

 

J774.1 and BMDM 

C57BL/6 mice  

ND 

 

 

 

 

 

ND 

 

 

 

ND 

TKI-induced AMPK activation 

was dependent on PP2Ac 

regulation 

 

 

 

IFN- induced autophagy in 

macrophages 

 

 

PINK1-PRKN/Parkin pathway is 

involved in the mitophagy 

induced by M. bovis 

(144) 

 

 

 

 

 

(141) 

 

 

 

(139) 

 

 

 

+Target molecule: molecule selected to evaluate cell death, (R): Resistance phenotype, ND: Not Determined, Mycobacterial load*: Quantified in the presence of 

the specific type of death concomitantly, AIF: Apoptosis Inductor Factor, HBHA: heparin-binding haemaglutinin, AIM2: absent in melanoma 2, LDH: lactate 

dehydrogenase, NLRP3: NOD, leucine-rich repeats and pyrin domain-containing protein 3, NOD, leucine-rich repeats and pyrin domain-containing protein 7, 

LC3: Microtubule-associated protein 1A/1B-light chain 3, LAMP-1: lysosomal associated membrane protein 1, HSPD1: heat shock 60-kDa protein 1, PPE: Pro-

Glu motif-containing (PE) and Pro-Pro-Glu motif-containing (PPE) family proteins, BMDM: bone-marrow derived macrophages, MRP8/14: Myeloid-related 

proteins (MRPs) 8 and 14, LRG-47: IFN-inducible protein Irgm1. 
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