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Abstract: 

Machine Learning (ML) algorithms have proven advantageous in addressing challenges 

associated with the quantity and complexity of information, discovering patterns, performing 

efficient analyses, and serving as a decision-making tool. The objective of this study was to 

compare four ML methods —artificial neural networks (NN), regression trees (RT), random 

forests (RF), and support vector machines (SVM)— for predicting genomic value in 

European Swiss cattle using phenotypic records of birth weight (BW), weaning weight (WW) 

and yearling weight (YW), as well as genomic information. The results indicate that the 

predictive ability of the models varies according to the features and the amount of 

information available. NN, RF, and SVM exhibited similar performances, while RT 

underperformed. The SVM methodology stood out as the tool with the greatest potential, 

achieving the highest values of Pearson correlation between corrected phenotypes and 
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predicted genetic values for WW. Despite its higher computational cost, the NN performed 

reasonably well, especially for BW and YW. The selection of the final model depends on the 

specific requirements of the application, as well as on such practical factors as data 

availability, computational resources, and interpretability; however, in general, the NN and 

SVM emerged as solid choices in several categories. 
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Genomics has evolved in recent years thanks to advances in DNA sequencing technology. 

This progress has allowed the generation of large amounts of data at an unprecedented speed. 

However, the inherent complexity of genomic data, as well as its dimensionality, pose 

significant obstacles(1). The diversity of genomic information, ranging from DNA sequences 

to associated phenotypic data, adds further complexity. In addition, variability in the quality 

and structure of genomic data can make it difficult to extract useful and meaningful insights. 

Within this context, machine learning (ML) methods emerge as valuable tools to address 

these challenges, offering the ability to process and analyze large volumes of data efficiently 

and accurately(2). Their ability to identify complex patterns and nonlinear relationships in 

genomic and phenotypic data makes them a powerful tool for knowledge extraction(2,3). 

 

The application of ML techniques allows for addressing such tasks as the identification of 

genes relevant to specific traits, prediction of gene functions, detection of genetic variants 

associated with particular traits, and classification of species based on genomic 

information(4,5,6). Recently, ML has become attractive in genomic prediction because of its 

ability to handle large volumes of data, its flexibility in modeling nonlinear relationships, 

improving predictive accuracy, and continuous innovations in algorithms and techniques; 

nevertheless, research is needed to investigate how it compares in predicting genetic values 

with conventional GBLUP methods(7). Combining genomic data with ML algorithms would 

lead the creation of reliable predictive and descriptive models, which in turn would have 

implications for selective breeding, species conservation, and the understanding of 

evolution(8,9). 

 

Among the most commonly used ML methods are neural networks, support vector machines, 

decision trees, linear regression, and clustering methods(3,8-11). The diversity of available 

approaches reflects the versatility of these methods in solving challenges involving genomic 

information, such as DNA sequence classification and protein structure prediction(12). The 
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success of the application of these methods in animal genomics depends to a large extent on 

the availability of information(13), as well as on selecting the optimal ML method, given that 

several methods have been proposed, each with its own characteristics and specific predictive 

capabilities with different data sets and features(3,7). 

 

Thus, the objective of this study was to compare the following ML methods —neural 

networks (NN), regression trees (RT), random forests (RF), and support vector machines 

(SVM)— to predict genomic breeding values using phenotypic records of birth, weaning and 

yearling weights, as well as genomic information of a population of Swiss European cattle 

in Mexico. 

 

The information was drawn from the database of the Mexican Association of Registered 

Swiss Cattle Breeders (Asociación Mexicana de Criadores de Ganado Suizo de Registro, 

AMCGSR), which contains phenotypic records and animal identification, ranch of origin or 

owner, genealogy, and economically important traits such as birth weight (BW), weaning 

weight (WW) and yearling weight (YW). The data set used was previously analyzed by 

Valerio-Hernández et al(14,15) to fit other models, so that some of the results obtained here 

compare directly with those of the authors mentioned above. The treatment of phenotypic 

information for BW, WW, and YW followed the procedure described by Valerio-Hernández 

et al(14,15), i.e., individuals with missing information on maternal age, management, herd of 

origin, as well as individuals not genetically related were omitted. Contemporary groups 

(CG) were defined by combining the effects of herd, year, and time of birth. For WW, the 

CG were formed according to the feeding management given to the herd, as well as 

adjustment to specific days for weaning. CG with less than three individuals or with zero 

variance were discarded, according to the methodology cited above(14). 

 

Genomic information was obtained through the analysis of hair samples collected from 300 

animals from ranches belonging to the AMCGSR in Colima, Jalisco, and Veracruz. 

Genotyping was performed by GeneSeek (Lincoln, NE, USA), using the Genomic Profile 

Bovine LDv.4 chip, which has been used to genotype various Bos indicus and Bos taurus 

breeds. A total of 150 animals were genotyped with a chip containing 30,000 markers, and 

another 150 animals were genotyped using a chip with 50,000 SNP (Single Nucleotide 

Polymorphism) markers. A total of 12,835 SNP markers present in both chips were selected. 

 

The recoding of additive genetic effects such as AA=0, AB=1, and BB=2 and the quality 

control of genotypic information carried out by Valerio-Hernández et al(15) were based on 

that performed by Jarquín et al(16). For the imputation of missing genotypes in the present 

study, it was used the FImpute(17) software (version 2.2), this process yielded 1). A marker 

map (marker, chromosome, base-pair position), eliminating duplicate markers or markers 

with unknown positions, and 2) The pedigree of the individuals and their corresponding sex. 

Monomorphic markers and those with a minor allele frequency (MAF) lower than 0.04 were 
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eliminated. A total of 9,008 markers were obtained and used to build the genomic relationship 

matrix G; Table 1 shows the number of animals incorporated into the study for each trait 

after filtering. 

 

Table 1: Number of animals from a Braunvieh cattle population genotyped and phenotyped 

for three growth traits 

BW= birth weight, WW= weaning weight, YW= yearling weight. G2 Animals with phenotypes and genomic 

information. 

 

The genomic relationship matrix G was estimated using the methodology described by Pérez-

Rodríguez et al(18), G=WWt/p, where W is the centered and standardized marker matrix and 

p is the total number of markers. Additionally, the relationship matrix H, which combines 

information from the G matrix with information from the additive genetic relationship matrix 

A, obtained for pedigree individuals. 

 

Linear mixed models (Base Models). Comparison of the results of predictive power for the 

BW, WW, and YW breeding values considers the sequence of models and results described 

by Valerio-Hernández et al(15) for linear mixed models versus machine learning models. In 

order to present all the pertinent information, the linear mixed model used by these authors 

is described below: 

 

𝒚 = 𝑿𝒃 + 𝒁1𝒄 + 𝒁2𝒂 + 𝒆, … (1) 

 

where 𝒚 is the phenotype vector, 𝑿 is the incidence matrix for fixed effects —which for this 

study are sex of the animal, age of the mother of each animal, and the contemporaneous 

group, described above—, 𝒃 is the vector of fixed effects, 𝒁1 is an incidence matrix 

connecting phenotypes with contemporaneous groups, whose effects are assumed to be 

random and represent the variability in phenotypes due to differences between groups of 

individuals that are subject to the same environmental and management conditions,  

𝒄~𝑁𝑀(𝟎, 𝜎𝑔𝑐
2 𝑰), where NM denotes the multivariate normal distribution, with mean 0 and 

associated variance parameter 𝜎𝑔𝑐
2 , I the identity matrix, Z2 is an occurrence matrix 

connecting phenotypes with additive genetic effects which are assumed to be random effects, 

𝒂 ∼ 𝑀𝑁(𝟎, 𝜎𝑎
2𝑲), with 𝑲 ∈ {𝑨, 𝑮, 𝑯}, 𝒆~𝑀𝑁(𝟎, 𝜎𝑒

2𝑰) represents the random error vector, 

where 𝜎𝑒
2 denotes the variability associated with it. Depending on the data used, model (1) 

gives rise to three different models, denoted as follows: 1) BLUP, 𝑲 = 𝑨, 2) GBLUP, 𝑲 =

Group/Variable BW WW YW 

Genotyped 300 300 300 

Phenotyped 330 267 232 

Phenotyped  in G2 232 218 191 
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𝑮, and 3) ssGBLUP (single-step GBLUP) with 𝑲 = 𝑯. The linear mixed models described 

above were fitted by Valerio-Hernández et al(15) using the BGLR statistical package(19). 

 

Machine learning models. The input variables for the ML algorithms were the genetic 

relationship matrix combining genomic information and pedigree information called H, as 

well as the effects of dam’s age for each animal, indicator variables for sex, and 

contemporaneous group described above. In order to include the information of the H matrix 

in the learning models, a spectral decomposition of the matrix was performed, i.e., 𝑯 =

𝚪𝚲𝚪𝑡, from which 𝑿 = 𝚪𝚲
1

2 (main components) were obtained and utilized as covariables 

(explanatory variables) in the models; this and other related computational strategies have 

been used by other authors in the past(20,21). 

 

Artificial neural network. Neural networks (NN) were initially designed to emulate the 

functioning of the nervous system and which process input information through 

mathematical operators, generating output values or the final result(3,22). Input variables affect 

model’s performance and can generate overfitting if the amount of information is large; 

therefore, it is important to optimize these variables(23). One of the advantages of neural 

networks is their ability to learn nonlinear patterns(3). The model of an NN with an input layer 

with p predictors, a hidden layer with S neurons, and an output layer with a continuous 

response can be expressed as follows: 

 

𝑦𝑖 =  𝛽0 + ∑ 𝑤𝑘
𝑠
𝑘=1 𝑔(𝛽0

(𝑘)
+ ∑ 𝛽𝑗

(𝑘)
𝑥𝑖𝑗) + 𝑒𝑖

𝑝
𝑗=1 , 

 

where 𝑒𝑖~𝑁𝐼𝐼𝐷(0, 𝜎𝑒
2), with NIID denoted by normal, independent, identically distributed 

random variables; 𝑘 = 1, … , 𝑆 (neurons); 𝑗 = 1, … , 𝑝 (predictors); 𝑖 = 1, … , 𝑛 

(observations), and 𝑔(⋅) represents the activation function, according to Bai et al(24) and 

Gianola et al(20), where, 𝑦𝑖 is the response variable for the ith individual, in this case, the 

growth weights (BW, WW, YW) of Braunvieh cattle that the network predicts as a function 

of inputs; 𝛽0 is the bias term or the intercept, which can represent the predicted value when 

the inputs are equal to zero, and 𝑤𝑘  are weights associated with each of the neurons and 

determine the contribution of each neuron to the final prediction. The hidden layer is an 

intermediate layer between the input layer and the output layer, it is where most of the 

processing and feature extraction of the dataset take place; it is composed of a specific 

number of neurons. (S) is a hyperparameter of the model that is adjusted during the training 

process. A higher value of S allows the neural network to capture greater complexity in the 

data, but may also increase the risk of overfitting. The NN adjusts the parameters (𝛽′𝑠, 𝑤′𝑠) 

during the training process to minimize the prediction error. The activation function, 𝑔(⋅), 

maps the real line entries to the bounded open interval (-1,1), as described by Pérez-

Rodríguez et al(25), where 𝑔(𝑥) = 2/[1 + exp(−2𝑥)] − 1 is known as the hyperbolic tangent 

activation function (htaf). The “brnn” function was used to fit the neural network model(26) 
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included in the package of the same name (version 0.9.3) in the statistical package R(27) 

(version 4.3.0). 

 

Regression trees. This model is based on the one proposed by Breiman et al(28), 𝑦𝑖 =

 ∑ 𝑦𝑗𝐼(𝒙𝑖𝜖 𝑅𝑗)𝐽
𝑗=1 , where 𝑦𝑖 is a response variable (BW, WW, and YW), 𝑦𝑗 is the regression 

value associated with a “leaf”, 𝒙𝑖 is the set of characteristics of the observation, 𝑅𝑗 is the 

region associated with “leaf j” defined by characteristics and cutoff values on the path from 

“root” to “leaf”. 𝐼(⋅) is an indicator function that takes the value 1 if observation i belongs to 

the region 𝑅𝑗. The tree identifies the splits that minimize the error in each region and split 

recursively until a process-stopping criterion is reached, such as the maximum depth of the 

tree or the minimum number of cases in a leaf. The model fitting was performed with the 

“rpart” function(29) included in the library of functions of the same name (version 4.1.19) 

within the statistical package(27) (version 4.3.0). 

 

Random forests. This model combines multiple RTs averaging the predictions of each to 

obtain a final optimized prediction, 𝑦𝑖 =  
1

𝑁
∑ 𝑦𝑖𝑗

𝑁
𝑗=1 , where N is the number of trees in the 

random forest, 𝑦𝑖 is an observed random variable (BW, WW, and YW), and 𝑦𝑖𝑗 is the 

prediction of the jth RF for the observation i. The random forests algorithm was implemented 

using the “randomForest” function(30) included in the library of functions of the same name 

(version 4.7-1.1) within the statistical package R(27) (version 4.3.0). 

 

Support vector machine. The Support Vector Machine Model (SVM) was used for 

classification and regression(31). Within the context of regression, given a data set 

{𝑦1, 𝒙1}, … , {𝑦𝑛, 𝒙𝑛}, where 𝑦𝑖 represents the value of the continuous response variable for 

the ith individual, and 𝒙𝑖, the value of the associated covariates, the objective is to obtain a 

function 𝑓(𝒙) such that the distance with y is no larger than ε for each of the training points. 

According to Hastie et al.(32) the regression function is approximated in terms of basis 

functions {ℎ𝑚(𝒙)}, 𝑚 = 1, … , 𝑀 as follows: 

 

𝑓(𝒙) = 𝛽0 + ∑ 𝛽𝑚ℎ𝑚(𝒙)𝑀
𝑚=1 , 

 

where 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑀)𝑡  are coefficients obtained by minimizing: 𝑄(𝜷) = ∑ 𝐿(𝑦𝑖 −𝑛
𝑖=1

𝑓(𝒙𝑖)) +
𝜆

2
∑ 𝛽𝑚

2 , in which 𝐿(⋅) is called loss function (e.g. quadratic or absolute value), and 

𝜆 is a positive regularization parameter. For any selection of 𝐿(⋅), the solution has the form: 

𝑓(𝒙) = ∑ 𝑎̂𝑖𝐾(𝒙, 𝒙𝑖)𝑛
𝑖=1 , with 𝐾(⋅,⋅) known as kernel function. Kernels are fundamental 

components of the model; they serve as functions that allow transforming the data and 

generating a higher dimensional space; they help to model complex relationships in the data. 

The most common kernels are the linear (𝒙𝑖
𝑡𝒙𝑗), polynomial (𝒙𝑖

𝑡𝒙𝑗 + 𝑐𝑜𝑒𝑓0)𝑑 , 𝑑 = 2,3, …, 
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radial (𝑒−𝛾||𝒙𝑖−𝒙𝑗||
2

), and sigmoid (htaf (𝛾𝒙𝑖
𝑡𝒙𝑗), +𝑐𝑜𝑒𝑓0), where 𝛾 is known as the 

bandwidth that is adjusted in the training process through cross-validation, and 𝑐𝑜𝑒𝑓0 is a 

constant that can be adjusted during the model training process, although it is usually set to 

1. The model was fitted using the “e1071” package(33) (version 1.7-13), with the help of the 

SVM function in the statistical package R(27) (version 4.3.0). Codes for model fitting are 

available upon request to the author for correspondence. 

 

Cross-validation. Cross-validation is a widely used data re-sampling method to estimate the 

true prediction error of models and to adjust model parameters(20,34). Therefore, in order to 

obtain the predictive capability of the models NN, RT, RF, and SVM, and thus make the 

comparison, the cross-validation was carried out using as a reference the procedures 

performed by Valerio-Hernández et al(15) These authors randomly divided the data into 

percentages, allotting 80 % to the training set and 20 % to the validation set, and the process 

was repeated 100 times. The ML models were fitted, and the correlations between the 

observed vs. predicted values were estimated by observing the values of the response variable 

corrected for fixed effects and other random effects. Pearson's correlation coefficient was 

estimated for the corrected phenotypes and predicted genetic values for each one of the 

partitions, and averages were obtained for each model. 

 

Table 2 presents the averages of the 100 Pearson correlations (based on cross-validation) 

between corrected and predicted values for the BW, WW, and YW traits, using the four ML 

algorithms compared in the study. For WW, the SVM algorithm achieved the highest values 

for the Pearson’s correlation coefficient between corrected and predicted values in the 

validation sets (WW= 0.256). By this method, the best fit for the three characteristics was 

obtained with the “Radial Kernel” by optimizing the hyperparameters γ (gamma) and cost 

(BW: 0.045 and 0.05; WW and YW: 0.05 and 0.01, respectively). Tests performed using the 

Artificial NN method determined the number of neurons in the hidden layer of the model to 

be 3 neurons for BW and 2 for WW and YW when appropriate parameter estimators of 

weights were obtained generating a parsimonious model. The best performance of this 

method was estimated at 0.402 for the BW and 0.195 for the YW. 

 

For the RF method, tests were conducted with different numbers of “trees” as model 

parameters; 150 of these obtained optimal prediction values for BW and WW, and 250, for 

YW. The third-best performance values were predicted for WW and YW. The RT 

methodology showed lower predictive capacity for WW and YW in this study. Based on 

these results, the following set of hypotheses were proposed to test the significance of the 

estimated correlation coefficients: 𝐻0: 𝜇𝑟 ≤ 0 vs 𝐻1: 𝜇𝑟 > 0, where 𝜇𝑟 is the mean of the 

distribution of the Pearson correlation coefficient and it was to test whether the association 

is positive or not. The set of hypotheses was tested using the 1-sample t-test, first verifying 



Rev Mex Cienc Pecu 2025;16(1):179-193 

 

186 

the assumption of normality in each of the cases(35); in all cases, it was concluded that the 

assumption of normality is appropriate (𝑃 − 𝑣𝑎𝑙𝑢𝑒 > 0.05).  

 

Table 2: Average Pearson’s correlation estimators and standard deviation between 

corrected phenotypes and predicted genetic values with the 100 cross-validations for the 

three growth characteristics and the compared algorithms 

Characteristic Algorithm  PCC SD 

BW 

Neural network  0.402 0.160 

Regression tree  0.286 0.153 

Random forests 0.223 0.163 

Support Vector Machine 0.347 0.129 

WW 

Neural network  0.224 0.126 

Regression tree  0.087 0.163 

Random forests 0.189 0.117 

Support Vector Machine 0.256 0.144 

YW 

Neural network  0.195 0.152 

Regression tree  0.091 0.178 

Random forests 0.140 0.128 

Support Vector Machine 0.184 0.160 

BW = birth weight, WW = weaning weight, YW = yearling weight; PCC = Pearson correlation coefficient; 

SD= standard deviation of the 100 correlation estimators for randomly selected partitions. 

 

To determine the predictive ability of the ML models, Pearson correlation coefficient 

estimators between corrected phenotypes and predicted genetic values were compared with 

those obtained from the analyzed models(36) in the test sets for each characteristic of the cross-

validation methodology described above; unlike the previous studies, this study maintained 

consistency in the data used in the analyses. This ensures consistency in the comparisons 

made and provides a solid basis for evaluating the relative performance of traditional methods 

and ML algorithms. The problem of inferring genetic values and predicting phenotypes for 

quantitative traits governed by complex forms of gene interactions is difficult to solve using 

the routinely used linear mixed models(37,38), Therefore, the use of ML algorithms is an 

alternative to model complex functions by identifying nonlinear relationships between the 

covariates and the response variable(20). The correlations between corrected phenotypes and 

predicted values with the methodologies used made it possible to evaluate the NN, RT, RF, 

and SVM machine learning algorithms for the growth characteristics BW, WW, and YW in 

bovines. Figure 1 illustrates that the NN, RF, and SVM algorithms generally showed a similar 

predictive performance to that of the methodologies assessed by Valerio-Hernandez et al(15) 

using the same variables. In a study comparing the predictive capacity of nonlinear neural 

networks (NLNN) with linear models, these were found to be potentially useful to predict 

complex characteristics based on genomic information, a situation in which the number of 
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parameters to be estimated usually exceeds the sample size(20). Rodríguez-Alcántar(3) 

compared ML algorithms using different sets of SNPs generated from chromosomes with a 

high number of QTLs associated with high milk production. This author found that 

classification accuracy ranged between 90.9 and 94.5 % with decision trees, and between 

79.0 and 87.3 % with neural networks. The author concludes that both the neural network 

method for binary classification and decision trees are efficient tools for the early 

identification of highly producing dairy cows. 

 

Figure 1: Comparison of correlation coefficients (average of 100 validations) of corrected 

phenotypes and predicted genetic values 

 
Genetic values obtained with machine learning methods, artificial neural networks (NN), regression trees 

(RT), random forests (RF), and support vector machines (SVM) with the methodologies applied by Valerio-

Hernández et al(15), best linear unbiased predictor (BLUP), genomic BLUP (GBLUP) and single-step GBLUP 

(ssGBLUP) for birth weight (BW), weaning weight (WW) and yearling weight (YW) of a population of 

Braunvieh cattle. 

 

The results suggest that the performance of the models varies according to the feature and 

the amount of information(20), among other factors. This suggests that better results can be 

obtained with these models by including more variable and covariate information to fit the 

training model(39,40); despite the low correlations and large variances of the predictions, these 

can be attributed to several genetic and methodological factors. Consistently with the findings 

of Cuyabano et al(41), it is important to consider genetic differences between reference and 

target populations when calculating the accuracy of predictions. Furthermore, it is suggested 

that there is a theoretical upper limit to the accuracy of these predictions, determined by the 

square root of the heritability. Zhang et al(42) mention that various factors can influence the 

accuracy of genomic breeding value predictions; heritability (using the model described as 

BLUP, Valerio-Hernandez et al(15) report 0.260 for BW; 0.223 for WW, and 0.231 for YW), 

the density of genetic markers, the minor allele frequency (MAF) utilized during the data 
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cleaning process, and the statistical model used are just some factors that can affect the 

accuracy of genomic breeding value predictions. This poses significant challenges in the 

prediction of complex traits. 

 

The SVM, NN, and RF methodologies showed similar performance in terms of Pearson 

correlation coefficients of corrected phenotypes and predicted values for the three growth 

characteristics used; these results were subsequently compared with the values obtained by 

Valerio-Hernández et al(15) using traditional BLUP, GBLUP, and ssGBLUP methodologies. 

The computational cost of the BW was higher than that of the other three compared 

algorithms; it was determined by measuring the runtime required to train and validate each 

one of the algorithms on this training and test data sets, recording the time elapsed from the 

start of the training to the completion of the validation process. This result is similar to that 

reported by Zhao et al(43), who mentioned that NR adjustment is more complicated and time-

consuming. The SVM algorithm stood out as a promising tool for prediction based on 

genomic information, considering the amount of information and the parameters used with 

this methodology. Like the Kernel(31), this algorithm contributes to ML applications for the 

analysis of datasets derived from genetic and genomic information(44,45). 

 

The results obtained in this study prove that ML algorithms have the potential to generate 

useful predictions even under constrained information conditions, such as a small sample 

size and low density of genetic markers. This finding highlights their applicability in practical 

scenarios where resources are limited. Nevertheless, significant challenges were identified, 

such as high computational cost and dependence on sufficient quality data to maximize 

predictive capability. Despite these limitations, algorithms such as NN and SVM showed 

consistent performance, suggesting that they may be valuable tools for genomic analysis. 

These results not only provide practical insights on the use of ML algorithms, but also open 

the door to future research focused on evaluating their behavior with larger and more detailed 

databases, optimizing both their implementation and their predictive capacity within different 

contexts. 

 

 

Acknowledgments 

 

 

The authors are grateful to the National Council for Humanities, Science, and Technology 

(Consejo Nacional de Humanidades, Ciencias y Tecnologías) of Mexico, for having provided 

funding for the first author’s master's degree studies, as well as to the Mexican Association 

of Registered Swiss Cattle Breeders (Asociación Mexicana de Criadores de Ganado Suizo 

de Registro) for allowing the use of their information. 

 

 



Rev Mex Cienc Pecu 2025;16(1):179-193 

 

189 

Conflict of interest 

 

 

The authors declare that they have no conflicts of interest. 

 

Literature cited: 

1. Pérez-Enciso M, Steibel JP. Phenomes: the current frontier in animal breeding. Genet Sel 

Evol 2021;53(1):22. doi: 10.1186/s12711-021-00618-1. PMID: 33673800; PMCID: 

PMC7934239. 

2. Song H, Dong T, Yan X, Wang W, Tian Z, Hu H. Using Bayesian threshold model and 

machine learning method to improve the accuracy of genomic prediction for ordered 

categorical traits in fish. Agric Comm 2023;1(1):100005. 

https://doi.org/10.1016/j.agrcom.2023.100005. 

3. Rodríguez-Alcántar E. Aplicación de algoritmos de aprendizaje automático para la 

clasificación de ganado lechero utilizando SNP de genoma completo [tesis Doctorado]. 

Baja California, México: Universidad Autónoma de Baja California; 2019. 

4. Campos TL, Korhonen PK, Hofmann A, Gasser RB, Young ND. Harnessing model 

organism genomics to underpin the machine learning-based prediction of essential genes 

in eukaryotes – Biotechnological implications. Biotechnol Adv 2022;54:107822. 

https://doi.org/10.1016/J.BIOTECHADV.2021.107822. 

5. Zhao T, Wu H, Wang X, Zhao Y, Wang L, Pan J, et al. Integration of eQTL and machine 

learning to dissect causal genes with pleiotropic effects in genetic regulation networks 

of seed cotton yield. Cell Rep 2023;42(9). https://doi.org/10.1016/j.celrep.2023.113111. 

6. Guo T, Li X. Machine learning for predicting phenotype from genotype and environment. 

Curr Opin Biotechnol 2023;79:102853. 

https://doi.org/10.1016/J.COPBIO.2022.102853. 

7. Wang X, Shi S, Wang G, Luo W, Wei X, Qiu A, et al. Using machine learning to improve 

the accuracy of genomic prediction of reproduction traits in pigs. J Anim Sci Biotechnol 

2022;13(60). https://doi.org/10.1186/s40104-022-00708-0. 

8. Long N, Gianola D, Rosa GJM, Weigel KA. Application of support vector regression to 

genome-assisted prediction of quantitative traits. Theor Appl Genet 2011;123(7):1065-

1074. https://doi.org/10.1007/s00122-011-1648-y. 

 

https://doi.org/10.1016/J.BIOTECHADV.2021.107822
https://doi.org/10.1016/j.celrep.2023.113111


Rev Mex Cienc Pecu 2025;16(1):179-193 

 

190 

9. González‐Camacho JM, Ornella L, Pérez‐Rodríguez P, Gianola D, Dreisigacker S, Crossa 

J. Applications of machine learning methods to genomic selection in breeding wheat for 

rust resistance. Plant Genome 2018;11(2):170104. 

https://doi.org/10.3835/plantgenome2017.11.0104. 

10. Müller AC, Guido S. Introduction to Machine Learning with Python: A guide for data 

scientists. O'Reilly Media, Inc. 2016. 

11. Azodi CB, Bolger, E, McCarren, A, Roantree, M, de los Campos, G, Shiu, SH. 

Benchmarking parametric and machine learning models for genomic prediction of 

complex traits. G3: Genes, Genomes, Genetics 2019;9(11):3691-3702. 

https://doi.org/10.1534/g3.119.400498. 

12. Fa R, Cozzetto D, Wan C, Jones DT. Predicting human protein function with multitask 

deep neural networks. PLoS ONE 2018;13(6). 

https://doi.org/10.1371/journal.pone.0198216. 

13. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 

2008;91(11):4414-4423. https://doi.org/10.3168/jds.2007-0980. 

14. Valerio-Hernández JE, Pérez-Rodríguez P, Ruíz-Flores A. Quantile regression for 

prediction of complex traits in Braunvieh cattle using SNP markers and pedigree. Rev 

Mex Cienc Pecu 2023;14(1):172–189. https://doi.org/10.22319/rmcp.v14i1.6182. 

15. Valerio-Hernández JE, Ruíz-Flores A, Nilforooshan MA, Pérez-Rodríguez P. Single-step 

genomic evaluation for growth traits in a Mexican Braunvieh cattle population. Anim 

Biosci 2023;36(7):1003-1009. https://doi.org/10.5713/ab.22.0158. 

16. Jarquín D, Howard R, Graef G, Lorenz A. Response surface analysis of genomic 

prediction accuracy values using quality control covariates in soybean. Evol Bioinform 

Online 2019;15:1176934319831307. https://doi.org/10.1177/117693431 9831307. 

17. Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype 

imputation using information from relatives. BMC Genomics 2014;15:478. 

https://doi.org/10.1186/1471-2164-15-478. 

18. Pérez-Rodríguez P, Crossa J, Rutkoski J, Poland J, Singh R, Legarra A, et al. Single-step 

genomic and Pedigree Genotype × Environment interaction models for predicting wheat 

lines in international environments. Plant Genome 2017;10(2). 

https://doi.org/10.3835/plantgenome2016.09.0089. 

https://doi.org/10.1177/117693431%209831307
https://doi.org/10.3835/plantgenome2016.09.0089


Rev Mex Cienc Pecu 2025;16(1):179-193 

 

191 

19. Pérez P, de los Campos G. Genome-wide regression and prediction with the BGLR 

statistical package. Genetics 2014;198:483–95. 

https://doi.org/10.1534/genetics.114.164442. 

20. Gianola D, Okut H, Weigel KA, Rosa GJM. Predicting complex quantitative traits with 

Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genetics 

2011;12:87. doi.org/10.1186/1471-2156-12-87. 

21. Pérez-Rodríguez P, Flores-Galarza S, Vaquera-Huerta H, del Valle-Paniagua DH, 

Montesinos-López OA, Crossa J. Genome-based prediction of Bayesian linear and non-

linear regression models for ordinal data. Plant Genome 2020;13(2). 

https://doi.org/10.1002/tpg2.20021. 

22. Peng J, Yan G, Druzhinin Z. Applying an artificial neural network- Developed collective 

animal behavior algorithm for seismic reliability evaluation of structure. Measurement 

2023;220:113355.  

23. Wang C, Xu S, Liu J, Yang J, Liu C. Building an improved artificial neural network 

model based on deeply optimizing the input variables to enhance rutting prediction. 

Constr Build Mater 2022;348:128658.  

24. Bai S, Kolter JZ, Koltun V. An empirical evaluation of generic convolutional and 

recurrent networks for sequence modeling. 2018. http://arxiv.org/abs/1803.01271. 

25. Pérez-Rodríguez P, Gianola D, Weigel KA, Rosa GJM, Crossa J. An R package for fitting 

Bayesian regularized neural networks with applications in animal breeding. J Anim Sci 

2013;91(8):3522–3531. https://doi.org/10.2527/jas.2012-6162. 

26. Pérez-Rodriguez P, Gianola D. Title Bayesian regularization for Feed-Forward Neural 

Networks. 2022. https://cran.r-project.org/package=brnn. 

27. R Core Team. R: A language and environment for statistical computing. R Foundation 

for statistical computing. 2021. Vienna, Austria. https://www.R-project.org/. 

28. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. 

Wadsworth. 1984. https://doi.org/10.1201/9781315139470. 

29. Therneau T, Atkinson B, Ripley B. Package “rpart”. 2022. https://cran.r-

project.org/package=rpart. 

30. Liaw A, Wiener M. Classification and Regression by random Forest. R News 2002;2(3): 

18-22. https://CRAN.R-project.org/doc/Rnews/. 

https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.2527/jas.2012-6162
https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=rpart
https://cran.r-project.org/doc/Rnews/


Rev Mex Cienc Pecu 2025;16(1):179-193 

 

192 

31. Chih-Chung C, Chih-Jen L. LIBSVM: A library for support vector machines. ACM Trans 

Intell Syst Technol 2011;2(3):1-27. http://www.csie.ntu.edu.tw/~cjlin/libsvm. 

32. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: Data mining, 

inference, and prediction. Berlin: Springer Science & Business Media. 2008.  

33. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F, Chang C, Lin C. Package 

“e1071”. 2023. https://cran.r-project.org/package=e1071. 

34. Berrar D. Cross-Validation. ABC of bioinformatics. Elsevier 2018; 542-545. 

https://doi.org/10.1016/B978-0-12-809633-8.20349-X. 

35. Royston P. An extension of Shapiro and Wilk's W test for normality to large samples.  

Applied Statistics 1982;(31):115-124. https://doi.org/10.2307/2347973. 

36. González-Recio O, Forni S. Genome-wide prediction of discrete traits using bayesian 

regressions and machine learning. Genet Sel 2011;43(1): https://doi.org/10.1186/1297-

9686-43-7. 

37. Gianola D, de los Campos G. Inferring genetic values for quantitative traits non-

parametrically. Genet Res (Camb) [Internet]. 2009/01/06. 2008;90(6):525–540.  

38. Gianola D, Fernando RL, Stella A. Genomic-Assisted prediction of genetic value with 

semiparametric procedures. Genetics 2006;173(3):1761–1776. 

https://doi.org/10.1534/genetics.105.049510. 

39. Monaco A, Pantaleo E, Amoroso N, Lacalamita A, Lo Giudice C, Fonzino A, et al. A 

primer on machine learning techniques for genomic applications. Comput Struct 

Biotechnol J 2021;19:4345-4359. https://doi.org/10.1016/j.csbj.2021.07.021. 

40. Alves AAC, da Costa RM, Bresolin T, Fernandes Júnior GA, Espigolan R, Ribeiro AMF, 

et al. Genome-wide prediction for complex traits under the presence of dominance 

effects in simulated populations using GBLUP and machine learning methods. J Anim 

Sci 2020;98(6):1–11. https://doi.org/10.1093/jas/skaa179. 

41. Cuyabano BCD, Boichard D, Gondro C. Expected values for the accuracy of predicted 

breeding values accounting for genetic differences between reference and target 

populations. Genet Sel Evol 2024;56:15. https://doi.org/10.1186/s12711-024-00876-9. 

42. Zhang H, Yin L, Wang M, Yuan X, Liu X. Factors affecting the accuracy of genomic 

selection for agricultural economic traits in maize, cattle, and pig populations. Front 

Genet 2019;14(10):189. https://doi.org/10.3389/fgene.2019.00189. 

http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://cran.r-project.org/package=e1071
https://doi.org/10.1016/B978-0-12-809633-8.20349-X
https://doi.org/10.2307/2347973
https://doi.org/10.1186/1297-9686-43-7
https://doi.org/10.1186/1297-9686-43-7
https://doi.org/10.1093/jas/skaa179
https://doi.org/10.1186/s12711-024-00876-9


Rev Mex Cienc Pecu 2025;16(1):179-193 

 

193 

43. Zhao W, Lai X, Liu D, Zhang Z, Ma P, Wang Q, et al. Applications of support vector 

machine in genomic prediction in pig and maize populations. Front Genet 

2020;11:598318. https://doi.org/10.3389/fgene.2020.598318. 

44. González-Camacho JM, Ornella L, Pérez-Rodríguez P, Gianola D, Dreisigacker S, 

Crossa J. Applications of machine learning methods to genomic selection in breeding 

wheat for rust resistance. Plant Genome 2018;11(2). 

https://doi.org/10.3835/plantgenome2017.11.0104. 

45. Libbrecht M, Noble W. Machine learning applications in genetics and genomics. Nat Rev 

Genet 2015;16:321-332. https://doi.org/10.1038/nrg3920. 

https://doi.org/10.1038/nrg3920

