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Abstract: 

Controlling for genetic variables to managing conservation populations. Single nucleotide 

polymorphism (SNP) genetic markers were used to analyze genetic structure and variability 

in an American bison population in the state of Chihuahua, Mexico. A total of 174 individuals 

were sampled and analysis done of 42,366 SNP distributed in 29 chromosomes. Estimates 

were done of expected (He) and observed (Ho) heterozygosity, polymorphic information 

content (PIC), the fixation index (FST), the Shannon index (SI), linkage disequilibrium (LD), 
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kinship relationships (Rij; %), and effective population size (Ne). A genetic structure analysis 

was run to infer how many lines or genomes (k) define the studied population. A panel with 

2,135 polymorphic SNPs was identified and selected, with an average of 74 SNP per 

chromosome. In the exclusion process, 84.5 % were monomorphic, 8.5 % had a usable 

percentage less than 90 %, 6.3 % had a minor allele frequency less than 0.01 and 0.70 % 

exhibited Hardy-Weinberg disequilibrium (P<0.05). Estimated values were 0.30 for the SI, 

0.187 for Ho, 0.182 for He, -0.029 for the FST, and 0.152 for PIC. Of the 15,051 Rij estimates 

generated, the average value was 7.6 %, and 45.1 % were equal to zero. The Ne was 12.5, 

indicating a possible increase of 4 % in consanguinity per generation. Three genetic lines 

were identified (proportions = 0.730, 0.157 and 0.113), and, given the study population’s 

origin, are probably associated with natural selection or genetic drift. Genetic variability, as 

well as Rij levels, must be considered in conservation schemes. 
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Introduction 
 

 

The Bison genus (bison) is native to Asia and central Europe, but migrated to the American 

continent via the steppe bison (Bison priscus) and the giant bison (Bison latifrons). Current 

populations of American bison (AB; Bison bison) are the product of adaptation, evolution 

and natural selection; there are two allopatric subspecies, the plains bison (Bison bison bison) 

and the mountain bison (Bison bison athabascae). Historical and archaeological data suggest 

that the AB developed on the North American prairies, with estimated populations as high as 

60 million individuals. During the 19th Century, bison hunting for food and hides decimated 

the population, bringing it near extinction(1,2,3,4). 

 

In Mexico, there are historical accounts of AB in the states of Chihuahua, Coahuila, Durango 

and Sonora; the Janos-Hidalgo herd was a transboundary herd that moved between 

Chihuahua and New Mexico(5,6). There is currently a conservation herd at El Uno Ranch, in 

the Janos Biosphere Reserve (Chihuahua, Mexico), which was created with 23 individuals 

from Wind Cave National Park in the United States(7). As a genetic resource, the AB exhibits 

the time and space components, as well as use and option values of biodiversity. The time 
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and space components are determined by evolution and changes in species richness, relative 

abundance and dominance. The use value consists of the benefits provided by the resource, 

and the option value is defined by a genetic resource’s role in or contribution to ecosystem 

stability(8,9). 

 

Population biodiversity is the product of adaptation to and integration into ecosystems driven 

by evolutionary forces and population genetics (e.g., natural selection, genetic drift and 

migration). Genetic diversity is a component of biodiversity and comprises differences in 

heritable genetic material. Genetic variability is a measure of genotype differentiation as a 

function of population size and the criteria used to define inheritance of genetic material. 

Determined by its evolutionary history, a population’s genetic structure expresses the genetic 

diversity it harbors and this is distributed within the population. Loss of genetic diversity is 

the main challenge in at-risk populations, and is therefore a vital concept in the design of 

conservation schemes(10,11). The present study objective was to analyze the genetic structure 

and variability of the AB herd at El Uno Ranch using simple nucleotide polymorphism (SNP) 

genetic markers. 

 

 

Material and methods 
 

 

The AB herd at El Uno Ranch exists in a wild environment with almost no human contact, 

and is isolated and protected from populations of other bovids or other species that could 

alter its normal development. All ranch personnel are specialized and facilities are 

exclusively for managing the herd. A herd census and identification is done annually. For the 

present study, 174 animals (80 % of the total herd) were sampled: 102 females and 72 males 

born in 2012. Blood deposited on specialized cards in the GeneSeek Laboratory of Neogen® 

Corporation was used for DNA extraction. Analyses were done of 42,366 SNP genotypes 

distributed in 29 chromosomes and defined in the GGP Bovine 50K chip. During editing, 

loci were discarded if they had a usable percentage (UP) <90 %, were monomorphic, had a 

minor allele frequency (MAF) <0.01 and/or were in Hardy-Weinberg disequilibrium (HW; 

P<0.05). 

 

After editing, the SNPs panel was used to estimate six genetic variability indicators: expected 

heterozygosity (He); observed heterozygosity (Ho); polymorphic information content (PIC); 

the fixation index (FST); the Shannon index (SI) and linkage disequilibrium (LD)(12,13). The 

LD was evaluated based on the correlation (r2) between haplotype frequencies through 

loci(14). Correlation (r2) values range from zero to one, with values near zero indicating an 

absence of LD and independent segregation and those near 1 indicating non-random 

association between loci. The kinship relationship (Rij; %) was estimated using all the 



Rev Mex Cienc Pecu 2023;14(2):339-348 
 

342 

sampled individuals and the effective population size (Ne) based on adjusted average r2 via 

the Waples method(14). Estimates of r2 were done using the FSTAT program(15); the GenAlex 

program(16) was used to estimate He, Ho, PIC and the FST; the LDNE program(17) was used 

to analyze Ne; and ML-Relate(18) was applied to estimate Rij. 

 

Genetic structure was elucidated with the Structure genetic analysis program(19). This uses 

Bayesian grouping to infer the number of lines or genomes (k) within a population by using 

genetic markers for genotype analysis. The procedure assumes that individuals are of pure 

ancestry (k= 1) vs. ancestry of two or more lines (k ≠ 1), and proportionally assigns a genome 

to each line. Use of Bayesian clustering to infer k is derived from the a posteriori probability 

distribution generated by the Markov Chain-based Monte Carlo method. Five possible lines 

were evaluated in the present study, and individuals were assigned to them probabilistically. 

The number of lines (k) that provides the best fit is derived from the logarithmic likelihood 

of each sampling step, and the maximum or optimal value was obtained with the approach 

of Evanno et al.(20) and the Structure Harvester program(21). 

 

 

Results and discussion 
 

 

Editing produced a panel with 2,135 identified and selected SNPs (5.04 % yield versus total 

number of evaluated SNPs), with an average of 74 SNPs per chromosome. A total of 40,231 

SNPs were discarded: 84.5 % were monomorphic; 8.5 % by UP<90 %, 6.3 % by MAF<0.01, 

and 0.70 % by HW in disequilibrium. The panel of selected SNPs had a SI of 0.30, a Ho of 

0.187, a He of 0.182, a FST of -0.029, and a PIC of 0.152 (Table 1). The He, Ho and PIC 

values determine genetic marker viability in genetic variability studies. All SI estimates were 

nearer zero than one, which is associated with homogeneity in the population and reduces 

uncertainty when predicting the probability of assignment of an individual to a population. 

In all the chromosomes FST had values ranging from -0.002 to -0.062. This indicator measures 

levels of heterozygosis and homozygosis, and produces values between -1 and 1. Positive 

values indicate a heterozygote deficit and negative ones an excess. Values near zero are a 

sign of stability in the homozygous/heterozygous relationship. The average Rij value was 

7.61 % based on 15,051 estimates from 174 individuals. Within the 0 to 100 % range of this 

indicator, the present results could be classified into five strata: 45.1 % of the estimates were 

equal to zero; 14.5 % were from 0.01 to 4.9; 27.3 % from 5.0 to 19.9; 11.8 % from 20.0 to 

49.9; and 1.3 % were equal to or greater than 50.0. An individual’s consanguinity (F) is half 

the Rij of its parents. Estimates of Rij can therefore be used to select subpopulations for 

reproduction and conservation schemes, with a view to maintaining F levels. 
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Table 1: Number of SNPs, and genetic variability estimators per chromosome 

Cr ni nf PIC Ho He FST SI r2 

1 2587 88 0.155 0.194 0.186 -0.034 0.304 0.022 

2 2199 52 0.153 0.193 0.186 -0.029 0.302 0.019 

3 2072 56 0.211 0.263 0.260 -0.011 0.403 0.023 

4 1933 170 0.117 0.140 0.136 -0.035 0.241 0.222 

5 2173 160 0.105 0.126 0.122 -0.025 0.215 0.205 

6 2056 70 0.193 0.240 0.234 -0.025 0.372 0.020 

7 1858 232 0.195 0.240 0.226 -0.062 0.376 0.324 

8 1832 47 0.186 0.228 0.225 -0.024 0.359 0.021 

9 1818 57 0.230 0.298 0.289 -0.032 0.437 0.026 

10 1736 205 0.089 0.107 0.103 -0.028 0.189 0.288 

11 1766 52 0.143 0.174 0.170 -0.019 0.282 0.019 

12 1418 49 0.218 0.281 0.270 -0.034 0.415 0.031 

13 1544 65 0.151 0.192 0.187 -0.020 0.295 0.127 

14 1483 61 0.156 0.190 0.189 -0.013 0.307 0.105 

15 1395 59 0.176 0.221 0.212 -0.034 0.342 0.022 

16 1302 40 0.194 0.247 0.235 -0.044 0.372 0.024 

17 1233 41 0.195 0.246 0.239 -0.021 0.375 0.026 

18 1219 33 0.210 0.267 0.255 -0.039 0.399 0.028 

19 1218 65 0.124 0.147 0.146 -0.016 0.251 0.210 

20 1335 50 0.192 0.238 0.232 -0.031 0.370 0.026 

21 1183 33 0.185 0.235 0.228 -0.032 0.358 0.024 

22 1017 23 0.197 0.242 0.239 -0.017 0.379 0.029 

23 943 35 0.223 0.274 0.275 -0.010 0.425 0.074 

24 1081 56 0.162 0.197 0.198 -0.002 0.317 0.113 

25 749 115 0.083 0.099 0.094 -0.031 0.179 0.504 

26 879 145 0.096 0.108 0.107 -0.015 0.204 0.256 

27 724 26 0.248 0.313 0.308 -0.024 0.466 0.036 

28 785 21 0.209 0.265 0.263 -0.015 0.401 0.022 

29 828 29 0.200 0.254 0.247 -0.025 0.383 0.026 

Cr= chromosome; ni= number of evaluated loci; nf= number of polymorphic loci; PIC= polymorphic 

information content; Ho= observed heterozygosis; He= expected heterozygosis; FST= fixation index; SI= 

Shannon index; r2= average correlation between haplotype frequency through loci. 

 

In the present results Ne was 12.5, and overall average r2 was 0.099, with a range of 0.019 to 

0.504 (Table 1). Genetic structure analysis using five lines identified three lines in the study 

population, with proportions of 0.730, 0.157 and 0.113 (Figure 1). Based on Ne, the possible 

change or increase in inbreeding levels per generation is 4.0 % (ΔF = 1/(2*Ne)). In small 

populations managed for conservation, increases in F levels indicate loss of genetic 

variability. This can drive consanguineous depression which can affect population viability, 
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survival, reproduction, disease resistance, and environmental stress, among other 

factors(22,23). A Ne ≥50 is recommended for populations under conservation management(10), 

with the aim of keeping any increase in inbreeding at or below 1 % per generation. For 

example, a study of a European bison population reported estimated Ne values of 7.0 to 28.4 

through five generations(24). However, population increases did not result in higher Ne values, 

highlighting the fact that Ne may be influenced by founding population size and that low Ne 

levels may be associated with genetic drift and greater loss of diversity. A population’s 

evolutionary potential depends on its genetic variability and Ne values; if Ne is low then 

genetic drift is strong and may negatively impact its evolutionary potential(25). 

 

Figure 1: Structure and composition of El Uno Ranch American bison population based on 

five lines (k= 1, 2, 3, 4, 5). 

 
Each vertical line represents an individual and segment color represents the proportion of each group. 
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In similar studies, the Bovine SNP50K chip was used in three bison populations (one 

European and two American), producing SNP percentages of 1.8, 2.6 and 2.9, and He 

estimates of 0.135, 0.197, and 0.199(26,27). A SNP percentage in the same range (2.8 %) was 

reported for B. bonasus(28), although higher values (9.35 %) have also been reported for 

European bison, with an accompanying Ho of 0.306 and He of 0.250(29). Another study of 

European bison identified 1,536 SNPs, distributed at 8 to 136 SNPs per chromosome with an 

average of 51.2(30). 

 

The current AB population in the United States of America is derived from a genetic 

bottleneck process with significant variability and genetic structure(31,32). Three genetic lines 

were defined for the present study population. Given the origins of the El Uno Ranch herd, 

the line corresponding to the highest proportion probably corresponds to plains bison. A 

complementary line may be a contribution of the mountain bison and a third was likely 

generated by separation and development of the studied population. Any differentiation in 

the study population may have been caused by the genotype-environment interaction, 

although its adaptation and contribution to the ecosystem may also have had an effect. 

Genetic isolation between subpopulations affects some demographic and evolutionary 

processes; the consequent reduced gene flow can lead to accumulation of genetic differences 

between subpopulations(33). Overall, differences within populations can derive from the 

genetic diversity of the founding ancestors and their relative contributions, as well as Ne and 

its evolution over time(32). Genetic substructure does not always coincide with obvious 

morphological or geographic differences between subpopulations. Data from genetic markers 

and complementary analyses are required to draw contrasts between populations, identify 

possible sources of genetic material, and/or, where appropriate, define any possible 

differentiation. For example, a study of eleven bison populations identified genetic 

differentiation grouped into eight clusters(32), while another study identified two genetically 

distinct subpopulations within the Yellowstone National Park herd(33). Finally, an analysis of 

genetic structure in twelve bison herds identified three lines or genetic substructures (average 

constitution = 0.412, 0.303 and 0.285)(34). 

 

 

Conclusions and implications 
 

 

Three genetic lines were identified within the El Uno Ranch American bison herd. Two may 

be associated with the source populations while a third is probably linked to the separation 

process and the effects of natural selection or genetic drift. The present results highlight the 

need to consider genetic variability and parentage levels when designing reproduction and 

conservation plans. 
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