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Abstract: 

Crossbreeding allows taking advantage of additive genetic differences between breeds, they 

also allow making use of heterosis and complementarity. Therefore, it is necessary to 

generate information on the efficacy of crosses compared to pure breeds under the conditions 

of interest. The objective was to quantify the impact of additive and non-additive genetic 

effects for days to first estrus (DFE), days to first service (DFS), days open (DO), services 

per conception (SPC), calving interval (CI) and gestation length (GL). The productive and 

genealogical information of females from a diallel between Holstein (HO) and Brown Swiss 

(BS), a total of 148 cows of the breeds HO (n=43), BS (n=64) and their reciprocal crosses 

HO-BS (n=20) and BS-HO (n=21), was used. Contrasts were used to estimate individual 

heterosis and differences between direct genetic effects and between maternal genetic effects 

based on Dickerson models. The results showed that heterosis and differences between 

maternal effects were not significant (P>0.05) for any of the traits studied. Differences 

between direct genetic effects were only important (P<0.05) for SPC and GL. In conclusion, 

the heterosis generated by the crossbreeding between HO and BS did not influence the 

reproductive efficiency of females. Maternal effects were not different between HO and BS. 

Direct genetic effects for SPC and GL favored the BS breed. 

Keywords: Bovine, Diallel crossbreeding, Direct genetic effect, Heterosis, Statistical 

models, Linear models, Reproductive parameters, Reproductive traits. 
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Introduction 

 

 

The selection of purebred animals allows improving traits of zootechnical importance, such 

as milk production in dairy cattle(1,2). And precisely the high pressure of selection on this 

phenotype has generated antagonistic genetic correlations with longevity(3), udder health(4) 

and fertility(5). Generating deteriorations(6,7,8) observable in a low general productive 

performance(9). Establishing a system of crossbreeding between breeds is an alternative to 

solve this problem(10). 

 

The purpose of crossbreeding between genetically distant individuals is to generate new 

combinations of genes that allow taking advantage of direct (average deviation caused by the 

direct effect of the genes of the purebred individual) and maternal (average deviation due to 
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the effects of the dam’s genes through the maternal environment) additive genetic differences 

between breeds, and mainly to use non-additive genetic effects due to dominance and 

epistasis, such as heterosis(10-14), which allows the average of hybrid offspring to be 

phenotypically superior to the average of contemporary parental pure breeds(15,16). 

Individuals from crosses may have advantages over their parents if the traits of interest show 

positive or useful heterosis(17), which is reflected in better reproductive rates(18). 

 

On the other hand, in the tropical conditions of Mexico the main interest is milk production, 

for this reason, crosses are made with Brown Swiss or Holstein cattle(19), but not among them. 

The crossbreeding of these breeds could allow preserving the dairy ability and improving the 

general reproductive indexes. Therefore, evaluating the phenotypic behavior of the hybrid 

progeny based on the environment and the productive conditions of interest will provide the 

necessary knowledge when deciding the mating strategies that will be used to maximize the 

estimators of the reproductive parameters. The objective of the present study was to quantify 

the additive and non-additive genetic effects on the reproductive efficiency of Holstein, 

Brown Swiss females and their reciprocal crosses in a subtropical environment. 

 

 

Material and methods 
 

 

Geographical conditions 

 

 

The study was conducted at the “Las Margaritas” experimental site of the National Institute 

of Forestry, Agricultural and Livestock Research (INIFAP, for its acronym in Spanish), 

located in the municipality of Hueytamalco (latitude 19°, 20'N and longitude 97°, 20'W), in 

the northeastern sierra of the state of Puebla, Mexico, at 450 m asl. The climate is classified 

as humid subtropical Af(c)(20) and the average annual temperature is 20.8 °C, ranging from 

15.3 (winter) to 24.2 °C (summer), and the average annual rainfall is 1,270 mm. The abundant 

rainy season occurs from July to October; drizzle with temperature drop occurs from 

November to February(21). 

 

 

Herd characteristics 

 

 

The information used was from reproductive and genealogical records of 148 Holstein (HO; 

n=43) and Brown Swiss (BS; n=64) cows and their reciprocal crosses HO-BS (n=20) and 

BS-HO (n=21), which were produced with 85 sires and 121 dams through artificial 
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insemination and natural mating, and which were born between 1997 and 2006 and calved 

between 1998 and 2014. 

 

 

Animals and reproductive management 

 

 

Heifers weighing 350 kg or more and presenting no abnormalities in the reproductive tract 

after transrectal palpation were included. The detection of estrus was carried out from 0600 

to 0700 h and from 1700 to 1800 h, with the help of a bull with a chin-ball marker. Females 

in estrus were inseminated with the conventional technique 12 h after visual detection of 

estrus. The diagnosis of gestation was made by transrectal palpation 45 d after the last service. 

 

 

Health 

 

 

The cows were vaccinated against clostridiosis, pasteurellosis (twice a year; March and 

September) and bovine paralytic rabies (September). Tests for the control of brucellosis and 

tuberculosis were also performed every 14 mo (free herd). To control ectoparasites (ticks and 

flies), immersion bath was performed every 14 to 30 d, depending on the degree of infestation 

and the ectoparasiticidal product used. Dried cows were dewormed one month before 

calving, in case the coproparasitoscopic diagnosis indicated it. 

 

 

Feeding management 

 

 

The cows were kept in an intensive rotational grazing system, mainly in African star grass 

(Cynodon plectostachyus) and pangola grass (Digitaria decumbens). The periods of 

occupation and rest of the paddocks were from 2 to 3 d and from 35 to 40 d respectively, 

depending on the season of year, with a stocking rate of 2.5 animal units per hectare per year. 

During the dry season (November to March), the cows received 20 to 30 kg/animal/d of 

chopped fresh fodder, mainly Japanese cane (Saccharum sinense) or sugarcane (Saccharum 

officinarum), added with a mixture of molasses (97 %) and urea (3 %) at a rate of two to three 

kilograms per animal per day. In addition, lactating cows received 3.5 kg/d of a commercial 

concentrated feed (16 % crude protein and 70 % total digestible nutrients) during milking, 

while dry cows were fed 2 kg/d of the same type of feed. Together, they were provided with 

a mixture of minerals and water ad libitum. 
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Milking management 

 

 

The cows were separated from their calves on the third day postpartum, then classified and 

managed in three batches: 1) cows from calving to fifth month of lactation, 2) cows from the 

fifth month of lactation to drying and 3) dry cows. Milking of cows began on the fourth day 

after calving. They were milked twice a day (0600-0800 and 1400-1600 h) with a milking 

machine (Alfa Laval Agri, In-churn, United Kingdom). The cows were dry off at seven 

months of gestation or when their milk production was less than 2 kg per day. The averages 

of lactation length (days) and production per lactation (kg) were for BS: 323 ± 65 and 3190.55 

± 88, HO: 324 ± 69 and 3685.65 ± 1092, BS-HO: 323 ± 61 and 3887.29 ± 1058, and HO-BS 

328 ± 59 and 3910.44 ± 1315, respectively. 

 

 

Variables analyzed 

 

 

The variables analyzed were: 1) days to first estrus (DFE), defined as the days that elapsed 

from the last calving to the first manifest estrus; 2) days to first service (DFS), defined as the 

days that elapsed from the last calving to the first service of artificial insemination or natural 

mating; 3) days open (DO), defined as the period between the last calving and the next 

conception; 4) services per conception (SPC), defined as the number of inseminations or 

natural mating necessary to achieve gestation; 5) calving interval (CI), defined as the days 

elapsed between two consecutive calvings and 6) gestation length (GL), defined as the days 

that elapse between conception and calving(22). 

 

 

Data analysis 

 

 

The MIXED procedure of the SAS(23) statistical package was used. The model included the 

fixed effects of year of calving (17 levels: 1998 to 2014), season of calving (three levels: 

November-February; March-June and July-October), number of calving (six levels: 1 to 6), 

the cows’ breed group (four levels: HO, BS, HO-BS and BS-HO) and the random effect of 

the sire nested within the sire’s breed. For the tests of fixed effects, the Satterthwaite 

approximation was used for the denominator degrees of freedom. 
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Estimation of heterosis 

 

 

Contrasts were used to estimate individual heterosis and differences between direct genetic 

effects and between maternal genetic effects of Brown Swiss and Holstein based on the 

following models(24,25): 

 

HO = μn + gi
HO + gM

HO + gN
HO 

BS = μn + gi
BS + gM

BS + gN
BS 

HOBS = μn +  ½(gi
HO + gi

BS) + gM
BS + gN

BS + hi
HOBS 

BSHO = μn + ½(gi
BS + gi

HO) + gM
HO + gN

HO + hi
BSHO 

 

Where HO and BS = Holstein and Brown Swiss; HOBS and BSHO = reciprocal crosses 

between HO and BS; μn = average of the pure breeds involved in the diallel cross; gi
HO and 

gi
BS = deviation due to the average direct effect of the individual’s genes, which come from 

the HO or BS breed; gM
HO and gM

BS = deviation due to the average effects, through the 

maternal environment, due to genes of dams of the HO or BS breed; gN
HO and gN

BS = 

deviation due to average effects, through the maternal environment of HO or BS granddams, 

which may affect the maternal ability of their daughters; hi
BSHO and hi

HOBS = deviation due to 

the increase in average heterozygosity of the F1 crosses BS-HO and HO-BS. To estimate the 

differences between the direct genetic effects of HO and BS, the contrast (HO + HOBS - BS 

- BSHO) was used, while the differences between maternal genetic effects were estimated 

with the contrast BSHO - HOBS, assuming that gN
HO - gN

BS was equal to zero. Individual 

heterosis was calculated by the contrast [HOBS + BSHO - HO - BS] / 2. 

 

 

Results 
 

Table 1 shows the significance levels for the fixed effects considered in the models for each 

trait analyzed. 

 

Table 1: Levels of statistical significance of the fixed effects considered in the statistical 

model for analyzing reproductive traits 

Effects DFE DFS DO SPC CI GL 

Cow’s breed group 0.298 0.216 0.738 0.008 0.364 <0.0001 

Year of calving 0.001 0.001 0.003 0.079 0.019 0.233 

Season of calving 0.737 0.859 0.286 0.192 0.050 0.214 

Number of calving 0.739 0.770 0.338 0.781 - 0.560 

DFE= days to first estrus, DFS= days to first service, DO= days open, SPC= services per conception, CI= 

calving interval, GL= gestation length. 
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The effect of the cow’s breed group was significant for SPC (P=0.008) and GL (P=0.001). 

In the case of year of calving, it was significant for DFE (P=0.001), DFS (P=0.001), DO 

(0.003) and CI (P=0.019). The season and number of calving were not significant (P>0.05) 

for any of the traits studied, but they were still included in the model. The least square means 

and their standard errors for the traits studied are shown in Table 2. 

 

Table 2: Least square means and standard errors for DFE, DFS, DO, SPC, CI and GL, of 

HO, BS cows and their reciprocal crosses (HO-BS, BS-HO) 

Cow’s 

breed 

group 

DFE DFS DO SPC CI GL 

HOBS 97.81±7.18 97.65±7.03 118.78±7.39 1.70±0.12ab 405.83±6.67 281.22±1.00ab 

BSHO 94.25±8.15 94.71±7.84 116.05±7.80 1.61±0.11a 406.55±7.11 283.65±1.08a 

HO 88.79±6.95 89.19±6.84 124.47±7.41 1.88±0.12b 414.52±6.50 279.84±0.97b 

BS 103.31±6.35 104.98±6.23 123.40±6.81 1.45±0.11a 417.74±5.82 287.29±0.88c 

DFE= days to first estrus, DFS= days to first service, DO= days open, SPC= services per conception, CI= 

calving interval, GL= gestation length. 
a,b,c Means with different literals within columns are different (P<0.05). 

 

No differences (P>0.05) were found between the pure breeds and their reciprocal crosses in 

DFE, DFS, DO and CI. In the case of SPC, HO cows had significantly (P<0.05) higher 

number of SPC (1.88 ± 0.12) than the BS-HO (1.61 ± 0.11) and BS ones (1.45 ± 0.11), while 

HO-BS cows had an intermediate behavior (1.70 ± 0.12) to parent breeds (P>0.05). 

Regarding GL, the BS cows had significantly (P<0.05) longer gestations (283.65 ± 1.08) 

than the HO, BS-HO and HO-BS ones, and the HO-BS crosses had an intermediate behavior 

with respect to the breeds HO and BSHO (P>0.05). The estimate of heterosis, difference 

between direct genetic effects and difference between maternal genetic effects for the traits 

under study are shown in Table 3. 

 

Table 3: Estimates of differences between direct genetic effects, difference between 

maternal genetic effects and heterosis for reproductive traits 

Contrast DFE DFS DO SPC CI GL 

Direct -10.95±12.80 -12.86±12.45 3.79±11.54 0.52± 0.17** -3.94 ±11.47 -10.24±1.68** 

Maternal 3.56±10.30 2.94±9.96 2.72±9.05 0.09±0.13 -0.72±8.93 -2.43±1.34 

Heterosis -0.02±6.75 -0.90±6.55 -6.52±6.00 -0.01±0.09 -9.94±5.75 -0.95±0.87 

DFE= days to first estrus, DFS= days to first service, DO= days open, SPC= services per conception, CI= 

calving interval, GL= gestation length. 

*(P<0.05). 
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Direct genetic effects were important (P<0.05) for services per conception and gestation 

length. Heterosis and the difference between maternal genetic effects were not significant 

(P>0.05) for any of the traits studied. 

 

 

Discussion 

 

 

The effect of the cow’s breed group was only significant for SPC and GL (P<0.01). A 

possible explanation for the effect of the cow’s breed group on SPC and GL can be attributed 

to the fact that highly milk-producing cows tend to have a low conception rate(26). Decreased 

fertility in dairy cattle may have a pathological cause and be related to poor nutrition(27). Lack 

of adequate nutrition during the prepartum and early postpartum periods can lead to a 

reduction in levels of glucose, insulin, insulin-like growth factor 1 and a decrease in the 

frequency of LH pulses. At the same time, the levels of beta-hydroxybutyrate, non-esterified 

fatty acids and triacylglycerol can increase(28,29). Metabolic disorders predispose cows to 

gynecological disorders, thus reducing reproductive efficiency(28,29). On the other hand, it has 

been proven that some metabolites present in plasma are also found in the ovarian follicular 

microenvironment, and that the single profiles of these metabolites can affect the 

reproductive performance of dairy cattle at different physiological stages, such as heifers, 

primiparous and multiparous(30). It could also be attributed to differences in the genetic 

component resulting from the adaptability of pure breeds to tropical conditions(31). The origin 

of the phenomenon is unclear and is described as multifactorial. 

 

The year of calving was significant for DFE, DFS, DO and CI (P<0.01). These results can 

be attributed to fluctuations in climatic conditions that influence the physiology of the animal 

through adverse or favorable environments(32,33); the season and number of calving were not 

significant (P>0.05) for any of the traits studied. These results partially agree with those 

obtained by Hundie et al(34) and Niraj et al(35), who also found no differences between seasons 

or the number of calvings(36). Contrary to this, in an evaluation of different breeds and crosses 

of cattle (Brahman, Indubrasil, BS, BS x Zebu) in southeastern Mexico, it was found that, 

during the first and second calving, there are longer periods (CI) due to the stress caused by 

lactation, which are erroneously attributed to postpartum management. It is possible that this 

stress caused by lactation is not so intolerable in the dairy breeds (HO and BS) used in the 

present study(37). 

 

Regarding the least squares means, no differences (P>0.05) were found between the pure 

breeds and their reciprocal crosses in DFE, DFS, DO and CI. These results agree with those 

obtained by Blöttner et al(2), who found no difference in DO between HO and BS-HO. 

Contrary to this, when evaluating some reproductive traits of dairy cows in a rotational 
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crossing system using three breeds (HO, Jersey and Montbeliarde) in the highlands of 

Mexico, HO cows had more DO and a longer CI than any of the crosses evaluated(38). In 

another study, BS, HO-BS and BS-HO cows had significantly less DO(39,40) and the BS-HO 

cross a shorter CI than HO cows(39,40,41). Similarly, in a study conducted with databases from 

the Canadian Dairy Network (CDN), they evaluated 128,376 reproductive records of 55,648 

HO cows, pure and crossed with BS, Jersey, Norwegian Red and Swedish Red bulls, they 

found that differences in the number of services and in rates of no return significantly favor 

crossbred calves over the pure HO ones, therefore, hybrid animals will avoid the costs 

associated with a greater number of services per conception, will reduce the intervals between 

calvings and between lactations, which will result in a higher overall production(40). In 

addition to the above, the results of the present study show that HO cows require a greater 

number of SPC (P<0.05) than the BS-HO and BS ones, while HO-BS cows had an 

intermediate behavior. These results partially agree with those of another study where BS 

and BS-HO cows had fewer SPC (2.92 and 2.96; respectively) than HO and HO-BS cows 

(3.54 and 3.37; respectively)(40). Some authors even indicate that the BS breed and its F1 

crosseswith Holstein have better reproductive performance and greater adaptability to 

tropical conditions(42). One of the possible causes of the reproductive inefficiency of the 

Holstein breed dates back to its historical selection focused on its high milk production(43,44). 

The base method for its genetic improvement is the selection of individuals that exceed the 

productive merit for this trait(45), but the incorrect and widespread use of assisted reproductive 

technologies results in hundreds or thousands of calves from a single parent(46). The strong 

pressure in the selection and the poor orientation of the use of reproductive tools have caused 

inbreeding problems of consanguinity, which are negatively reflected on reproductive 

traits(46,47). Inbreeding generated by mating genetically related animals increases the 

frequencies of homozygous genes(48) and restricts heterozygosity(47,49), causing an increase in 

the frequency of harmful recessive alleles that manifest as less phenotypic variability(50,51). 

 

Regarding other traits analyzed, Blöttner et al(2) found no differences in the number of SPC 

between BS-HO and HO in three consecutive lactations analyzed independently, on the 

contrary, in the present study the analysis was carried out considering six lactations together, 

it is possibly the explanation of why statistical differences were found between breed groups. 

It should be considered that the number of SPC may be influenced by the reproductive health 

status of the cows, the management, the type of feeding and the seminal quality of both the 

straws and the ejaculate during natural mating(52), however, these factors were not included 

in the model due to lack of availability and because all the animals were under the same 

climatic and management conditions. BS-HO cows had significantly longer gestations 

(P<0.05) (283.65) than the HO (279.84) and BS ones (287.29); HO-BS cows had an 

intermediate behavior (281.22). This result agrees with that obtained by Blöttner et al(2), who 

reported a longer gestation in BS-HO females (282 d) than in pure Holstein cows (280 d). 

Nevertheless, an important factor influencing GL is the sex of the calves(53), unfortunately 

these data were not available to be included in the statistical model. 
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Heterosis and the difference between maternal genetic effects were not significant (P>0.05) 

for any of the traits studied. Conversely, the results in the Mexican highlands where DO, CI 

and SPC were evaluated in a rotational crossbreeding with Holstein, Jersey, Montbeliarde 

and Swedish Red, found that crosses needed fewer SPC and showed shorther DO and CI than 

the HO ones, due to the effect of heterosis(38). This is consistent with results obtained in 

subtropical conditions in Egypt(42). Nonetheless, both studies do not mention the heterosis 

estimated in the traits analyzed. For example, in BS-HO crosses, 7 % heterosis is reported 

for DO (in Mediterranean conditions in the United States)(54), and 1.3, -1.0 and -8.4 % 

heterosis for CI, DO and SPC, respectively(40). On the other hand, in the southern region of 

Brazil, they evaluated crosses of Simmental cattle (SM) with Holstein (F1, ¾ Holstein x ¼ 

SM and ¾ SM x ¼ Holstein ) and obtained shorter CI, DO and DFS in F1 and ¾ SM x ¼ 

Holstein cows(55). The authors mention that crossing HO with SM decreases body weight loss 

and guarantees a better postpartum energy balance that benefits the expression of 

reproductive traits(55,56). This effect is the result of complementarity between breeds, that is, 

combining the dairy ability of the HO with the reproductive ability of the SM cattle(57), 

despite the fact that both breeds are Bos taurus. The breeds are complementary to each other 

when they excel in different traits and the hybrid calf manifests a desirable performance for 

a greater number of phenotypes than pure breeds(57). The hybrid calf manifests superior 

phenotypic behavior if the parents contribute genes with dominant effect(18), the new 

combinations of different alleles at each locus (heterozygous)(13) will give rise to superior 

animals(58). However, for this to occur, it is necessary to use genetically divergent 

breeds(59,60). Then, the lack of significance (P>0.05) of the heterosis estimated in the 

crossbreeding of the breeds included in the diallel suggests little genetic divergence and 

similar gene frequencies between HO and BS for the traits evaluated, which translates into a 

scarce or null manifestation of heterosis(11); in this case, some authors recommend increasing 

the number of breeds involved in the crosses in order to increase heterozygosity(13,61). On the 

other hand, the differences between direct genetic effects were important (P<0.05) for SPC 

(0.52; with the HO breed exerting a greater effect) and GL (-10.24; with the effect of the BS 

breed predominating). 

 

 

Conclusions and implications 
 

 

The heterosis generated by the crossbreeding between HO and BS did not influence the 

reproductive efficiency of the females. The estimated heterosis suggests little genetic 

divergence between breeds for the traits evaluated. Maternal effects were no different 

between Holstein and Brown Swiss. Direct genetic effects favored the BS breed for SPC and 

GL. It is recommended to cross with genetically distant breeds to maximize the use of hybrid 
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vigor, depending on the production objective and always considering a balance between 

productive and reproductive traits. 
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