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Abstract: 

Genomic prediction models generally assume that errors are distributed as normal, 

independent, and identically distributed random variables with zero mean and equal variance. 

This is not always true, in addition there may be phenotypes distant from the population 

mean, which are usually removed when making the prediction. Quantile regression (QR) 

deals with statistical aspects such as high dimensionality, multicollinearity and phenotypic 

distribution different from the normal one. The objective of this work was to compare QR 

using marker and pedigree information with alternative methods such as genomic best linear 

unbiased prediction (GBLUP) and single-step genomic best linear unbiased prediction 

(ssGBLUP) to analyze the birth (BW), weaning (WW) and yearling (YW) weights of 

Braunvieh cattle and simulated data with different degrees of asymmetry and proportion of 

outliers. The predictive capacity of the models was assessed by cross-validation. The 

predictive performance of QR both with marker information alone and with information of 

markers plus pedigree, with the actual dataset, was better than the GBLUP and ssGBLUP 

methodologies for WW and YW. For BW, GBLUP and ssGBLUP were better, however, only 
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quantiles 0.25, 0.50 and 0.75 were used, and the BW distribution was not asymmetric. In the 

simulated data experiment, correlations between “true” marker effects and estimated effects, 

as well as “true” and estimated signal correlations were higher when QR was used compared 

to GBLUP. The advantages of QR were more noticeable with asymmetric distribution of 

phenotypes and with a higher proportion of outliers, as was the case with the simulated 

dataset. 
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Introduction 
 

The main motivation of the quantile regression (QR) method is that most models for genetic 

evaluation assume normality, which is not always true. Another problem is that sometimes 

phenotypic records very far from the population average are considered as recording errors 

or outliers and therefore removed from the analyses, seen from the genomic point of view, 

valuable information of markers associated with certain regions of DNA with strong 

influence on characteristics of interest is being lost. 

 

With the QR method, robust results and a broad vision of the explanatory variables on the 

dependent ones are obtained(1). The data generated from omics experiments are often 

complex and large, so there is a statistical challenge to extract relevant biological information 

from the large volume of data(2,3). Using a robust approach such as QR makes inference less 

biased and less subject to false positives(2). Recent studies using QR describe various 

applications such as etic association studies(4), population genetics(5), gene expression(6,7), and 

genomic selection(8–10). 

 

One of the first studies where QR was used to predict individual genetic merit was presented 

by Nascimento et al(11), who used simulated data, finding advantages when using QR 

compared to conventional methodologies. In the same year(12), results using QR to adjust 

growth curves with data from pigs and molecular markers were published; not only did they 

successfully adjust the growth curves, but they identified important markers associated with 

the studied characteristic. Another similar work by the same team of researchers was 

presented by Nascimento et al(13), but with bean data. Recently, Pérez-Rodríguez et al(10) 

extended the quantile regression model to include pedigree information through the use of 

the additive genetic relationship matrix, further improving the predictive ability of the models 
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and at the same time identifying the proportions of the variances attributed to markers, 

relationships between individuals and the residual, which allows a precise partitioning of the 

phenotypic variance to be obtained. 

 

The objective of the present study was to study the predictive power of the quantile regression 

model using simulated data and actual data (birth, weaning and yearling weights) from 

Braunvieh cattle and the following models were considered: 1) QR with information of SNP 

molecular markers (QRM), 2) QR simultaneously including molecular marker information 

and genealogical information derived from pedigree (QRH); 3) GBLUP which, like QRM, 

only included molecular marker information, and 4) single-step genomic evaluation 

(ssGBLUP) which included marker and pedigree information. 

 

Material and methods 
 

Genotypes 

 

The information used was from 300 animals (236 females, 64 males) born from 2001 to 2016 

in eight herds located in Eastern, Central and Western Mexico. Hair samples were collected 

for genotyping by the company GeneSeek (Lincoln, https://www.neogen.com/, NE, USA), 

using the GeneSeek® Genomic Profiler Bovine LDv.4 panel, with 30,000 and 50,000 SNP 

markers, 150 animals with each Chip. Genotyping was performed on two separate occasions, 

initially 150 individuals with the 30K Chip and later another group of 150 individuals with 

the 50K Chip since the 30K Chip was not available at the time. The SNPs in common between 

the 30K and 50K chips (12,835 SNPs) were used. The proportions of missing values were 

calculated for each marker and for each individual. The average of missing values per 

individual was 2.09 % with a standard deviation of 7.50 %. The average call rate (not missing 

proportion for each marker) was 97.90 % with a standard deviation of 4.66 %. Markers with 

a call rate of less than 95 % were removed. The genotypes were recoded as AA= 0, AB= 1 

and BB= 2, from which a matrix with 300 rows (individuals) and 12,835 columns (markers) 

was obtained, whose cells take values in the set {0,1,2, −}, where “−” denotes a missing 

value. For the 12,835 common markers of the two chips, the missing values were randomly 

imputed, generating samples of the 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2, 𝑝̂) distribution, where 𝑝̂ is the frequency of 

the major allele, calculated from the observed marker genotypes. Monomorphic markers or 

those with minor allele frequency (MAF) less than 0.04 were removed. After quality control, 

9,628 of the 12,835 SNPs in common between the two chips were available for further 

analyses. 
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Phenotypes 

 

The phenotypic and pedigree information of the Braunvieh cattle population was obtained 

from the database of the Mexican Association of Breeders of Registered Swiss Cattle. 

Records of birth (BW), weaning (WW) and yearling (YW) weights were used for analysis. 

Phenotype editing was similar for BW, WW and YW, records of animals not genetically 

related to those genotyped or with missing information for herd, dam’s age and management 

were discarded. Contemporary groups (CG) were defined by removing animals in CG of 2 

individuals or with variance equal to zero. For BW, the CGs were defined by combining the 

effects of the herd (8 herds), year (1998 to 2016) and season of birth; the seasons of birth 

were defined considering the Julian calendar, from 80 to 171d, spring; from 172 to 264 d, 

summer; from 265 to 354 d, autumn; from 355 to 366 d and from 1 to 79 d, winter. After 

editing data, for BW, 330 records were obtained. For WW and YW, the CGs were defined 

by combining the effects of the herd (6 herds), year (from 1998 to 2016), season of birth 

(same as BW) and management. In the case of WW, the management groups were defined 

in three ways: calves fed their mother’s milk; their mother’s milk plus balanced feed; and 

milk from their mother and nurse plus a balanced diet. For YW, the management groups were 

defined in three ways: grazing animals; grazing animals with feed concentrate; and housed 

animals with a balanced diet. The edition of WW and YW data ended with 267 and 232 

records for further analyses. Table 1 shows a summary of the number of animals genotyped, 

and phenotyped for BW, WW and YW. Figure 1 shows the violin plots for BW, WW and 

YW, the sample mean is represented by the red dot and the sample median by the horizontal 

line within the box, from the plot, it is clear that the response variables have an asymmetric 

distribution and the circles with solid filling in it suggest the presence of outliers. 

 

Table 1: Number of animals genotyped and phenotyped for the analysis of birth, weaning 

and yearling weights of a Braunvieh cattle population 

Group Birth weight Weaning 

weight 

Yearling 

weight 

Genotyped 300 300 300 

Genotyped and phenotyped 232 218 191 

Phenotyped in QRM and GBLUP 232 218 191 

Phenotyped in QRH and ssGBLUP 330 267 232 

QRM=Quantile regression using marker information, QRH=Quantile regression using marker and pedigree 

information, GBLUP=Genomic best linear unbiased predictor, ssGBLUP=Single-step genomic evaluation. 
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Figure 1: Violin plots of birth (PN=BW), weaning (PD=WW) and yearling (PA=YW) 

weights in a Braunvieh cattle population 

 
The sample mean is represented by the red dot and the sample median by the horizontal line inside the box 

 

Models 

 

Quantile regression model with markers (QRM) 

 

The model for quantile regression is: 

𝑦𝑖 = 𝜇 + 𝒙𝑖
𝑡𝜷 + 𝑤𝑖, 

where 𝑦𝑖 is the value of the phenotype of the i-th animal; 𝜇 is an intercept; 𝒙𝑖
𝑡 = (𝑥𝑖1, … , 𝑥𝑖𝑝) 

represents the i-th row of the marker matrix, 𝜷 = (𝛽1, … , 𝛽𝑝)
𝑡
 is the vector of regression 

coefficients associated with markers and 𝑤𝑖 are independent random variables such that their 

quantile 𝜃 ∈ (0,1) is zero. The estimation of the regression coefficients for a fixed interest 

quantile 𝜃 is obtained by solving the following minimization problem: 

𝑚𝑖𝑛{∑ 𝜌𝜃
𝑛
𝑖=1 (𝑦𝑖 − 𝜇 − 𝒙𝑖

𝑡𝜷) + 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1 }, 

where ∑ |𝛽𝑗|𝑝
𝑗=1  is the sum of the absolute values of the regression coefficients; 𝜆 is the 

penalty parameter that controls the intensity of regularization; and 𝜌𝜃(⋅) is the function 

defined as(1): 

𝜌𝜃(𝑡𝑖) = {
𝜏 × 𝑡𝑖 If 𝑡𝑖 ≥ 0

−(1 − 𝜏) × 𝑡𝑖 If 𝑡𝑖 < 0,
 

where 𝑡𝑖 = 𝑦𝑖 − 𝜇 − 𝒙𝑖
𝑡𝜷. After estimating the parameters of the model, the breeding values 

estimated by markers (GEBV) are obtained by the following expression: 
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𝐺𝐸𝐵𝑉(𝜏) = 𝑦̂𝑖(𝜏) = ∑ 𝑥𝑖𝑗𝛽̂𝑗(𝜏)
𝑝
𝑗=1 , 

where 𝛽̂𝑗(𝜏) is the effect of the j-th marker, defined by the functional relationship obtained 

for the quantile of interest. 

The QR model can be extended to include other terms, in particular for growth 

characteristics, the following model is used: 

𝑦𝑖 = 𝜇 + 𝒔𝑖
𝑡𝝇 + 𝒄𝑖

𝑡𝝔 + 𝒙𝑖
𝑡𝜷 + 𝒘𝑖, 

where 𝑦𝑖 is the value of the phenotype of the analyzed characteristic (BW, WW or YW) of 

the i-th animal, 𝜇 is an intercept; 𝒔𝑖
𝑡 = (𝑠𝑖1, . . . , 𝑠𝑖𝑓)  the i-th row of the incidence matrix for 

fixed effects (sex, dam’s age, management), 𝝇 = (𝜍1, . . . , 𝜍𝑓)𝑡 the regression coefficients for 

fixed effects, 𝒄𝑖
𝑡 = (𝑐𝑖1, . . . , 𝑐𝑖𝑡)  the i-th row of the incidence matrix for random effects of 

contemporary group (54, 43 and 37 for BW, WW and YW), 𝝔 = (𝜚1, . . . , 𝜚𝑡)𝑡 random effects 

of contemporary group, the rest of the terms as described above. 

 

GBLUP 

 

The model is given by: 

𝑦𝑖 = 𝜇 + 𝒔𝑖
𝑡𝝇 + 𝒄𝑖

𝑡𝝔 + 𝒛𝑖
𝑡𝒖 + 𝑒𝑖, 

where 𝒛𝑖
𝑡 = (𝑧𝑖1, . . , 𝑧𝑖𝑛)  is the i-th row of the matrix that connects phenotypes with 

genotypes, 𝒖 = (𝑢1, . . . , 𝑢𝑛)𝑡 is the vector of random effects for animals. Additive, 

contemporary group and residual genetic variances are assumed 𝑉𝑎𝑟(𝒖) = 𝑮𝜎𝑢
2, 𝑉𝑎𝑟(𝒄) =

𝐈𝜎𝑐𝑔
2 , and 𝑉𝑎𝑟(𝒆) = 𝐈𝜎𝑒

2, respectively. The matrix of genomic relationships, 𝑮, is calculated 

as described by Lopez-Cruz et al(14) and Pérez-Rodríguez et al(15); briefly, G = WW’/p, where 

W is the standardized and centered marker matrix (each marker centered by subtracting the 

mean allele frequency and standardized by dividing by the standard deviation of the sample 

of the allele frequency), p is the total number of markers, 𝑒𝑖 normal and independent random 

variables with normal distribution with mean 0 and variance 𝜎𝑒
2. 

 

Single-step quantile regression (QRH) model 

 

This method is considered an extension of the quantile model for a relationship matrix 

constructed using matrices of relationships for genotyped and non-genotyped animals and of 

which a pedigree is available. The resulting matrix is known in the literature as matrix H(16,17), 

this matrix is given by: 

𝐇−1 = 𝐀−1 + [
𝟎 𝟎
𝟎 𝐆𝑎

−1 − 𝐀𝑔𝑔
−1], 

where, Agg is a submatrix of A for genotyped animals, Ga = βG + α; 𝛽 and 𝛼 are obtained by 

solving the system of equations: 

{
𝐴𝑣𝑔(𝑑𝑖𝑎𝑔(𝐆))𝛽 + 𝛼 = 𝐴𝑣𝑔(𝑑𝑖𝑎𝑔(𝐀𝑔𝑔))

𝐴𝑣𝑔(𝐆)𝛽 + 𝛼 = 𝐴𝑣𝑔(𝐀𝑔𝑔)
. 
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The QRH model is given by: 

𝑦𝑖 = 𝜇 + 𝒔𝑖
𝑡𝝇 + 𝒄𝑖

𝑡𝝔 + 𝒛𝑖
𝑡𝒖 + 𝑤𝑖, 

where 𝑉𝑎𝑟(𝒖) = 𝜎𝐻
2𝑯, the rest of the terms as described above. 

 

Single-step GBLUP regression (ssGBLUP) model 

 

The ssGBLUP model is equivalent to the GBLUP model described above with the difference 

that the genomic relationship matrix G is replaced with the extended genetic relationship 

matrix H, it is assumed that 𝑉𝑎𝑟(𝒖) = 𝑯𝜎𝐻
2. 

 

Cross-validation 

 

The predictive capacity of the models was evaluated by cross-validation, which was 

performed as follows. The dataset was divided into five groups of the same size 

{𝑆1, 𝑆2, … , 𝑆5}, 80 % of the data was used for training of the model, the remaining 20 % for 

validation. For example, {𝑆2} is used as a validation group and the set {𝑆1, 𝑆3, … , 𝑆5} for 

training of the model. The models were fitted using the training set, and the fitted model was 

used to obtain predictions for the validation set. This procedure was repeated five times and 

predictions were obtained for each group. Correlations between observed and predicted 

phenotypes were calculated and averaged for the test sets(18). Note that because these are 

actual values, the true breeding values are not known, but only the observed phenotypes are 

available, the fitted model provides predictions for breeding values and predictions of other 

fixed and environmental effects, with which a prediction of the phenotype is obtained, which 

is contrasted with the true value of the phenotype. 

 

Simulation 

 

In order to evaluate the predictive power of the QR model against GBLUP, an asymmetric 

data simulation with the presence of outliers was also carried out; the simulation of the 

present work is analogous to that used by Pérez-Rodríguez et al(10). The main idea is to 

highlight that the quantile regression model works adequately in the presence of atypical 

observations, inhomogeneous variances and response variables with responses with 

asymmetric distribution. In the context of selection, for example, it is not unusual to have 

asymmetric distributions for phenotypes due to the process itself, since, if one selects for 

some characteristic Y, and if there is in addition to this another characteristic of interest O, 

then the conditional distribution of Y |O>o(19) is asymmetric. In the context of genomic 

selection, it is also common to find subsets of observations that differ significantly from the 

rest and these observations could be considered atypical. Montesinos-López et al(20) proposed 

a model with Laplace errors and showed that it predicts adequately even in the presence of 

outliers, the proposed model is a special case of the quantile regression model that is studied 
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in the present work. The 9,628 SNPs resulting from the quality control described above for 

300 animals were considered, the simulation of the data was carried out considering the linear 

model: 

𝑦𝑖 = 𝜇 + ∑ 𝒙𝑖𝑗𝛽𝑗
9,628
𝑗=1 + 𝑒𝑖, 

where 𝑖 = 1, … , 300, with 𝜇 = 39 for BW, it was assumed that the errors come from a biased 

normal distribution (𝑆𝑁𝑐) with mean 0, variance 𝜎2 (scale parameter 𝜎) and asymmetry index 

𝛾1, that is 𝑒𝑖~𝑆𝑁𝐶(0, 𝜎, 𝛾1), with 𝜎 = √1 − ℎ2, ℎ2 with a value of 0.35, 𝛾1 =

√
2

𝜋
𝜌3 (

4

𝜋
− 1) (1 −

2𝜌2

𝜋
)

−3/2

, 𝜌 ∈ {0.950, 0.975, 0.999} were considered, leading to 

different degrees of positive bias. Only positive values of 𝛾1 were considered since the 

negative bias is obtained simply by changing the sign of the 𝑒𝑖
′𝑠 and therefore the conclusions 

obtained for the case of positive bias will also be valid for the negative case(21,22). Fifty 

markers with non-zero effect were fixed, simulating them from a normal distribution with 

mean 0 and variance √1 − ℎ2 50⁄ , the rest of the markers were set at 0; the positions of the 

sampled markers were taken at random. To introduce outliers in the phenotypes, a certain 

proportion of the residues of 𝑒𝑖~𝑆𝑁𝐶(0,3, 𝛾1) were randomly generated, two proportions 

were considered, 5 and 10 %, so samples from a mixture of two components of biased normal 

distributions were taken. Six datasets were generated, three different asymmetry coefficients 

0.950, 0.975, 0.999 with their two alternatives of outlier proportion 5 % and 10 %. The 

asymmetric normal distribution has been used in genomic prediction(22) and its use in 

channeled selection has also been suggested(23). Once the data were generated, the QRM 

model was fitted with 𝜃 = {0.25, 0.50, 0.75} to compare it with GBLUP. The selection of 

quantiles was made according to Nascimento et al(11), who consider these three possibilities 

when the distribution of phenotypes is asymmetric 𝜃 ∈ {0.25,0.75} or when the distribution 

is symmetric 𝜃 0.50, since our fundamental interest in this work focused on the modeling of 

possibly asymmetric data and with the presence of outliers. The selection of the parameters 

was also made for computational convenience since the fitting of the model is done by using 

intensive computational techniques based on Markov chain Monte Carlo, as mentioned in 

the section on software and fitting of the models. For each analysis, the correlation between 

true and estimated 𝜷′𝑠, the correlation between true 𝑿𝜷 and estimated 𝑿𝜷̂ signals and the 

component of variance associated with the residuals for each model, which is a way to 

evaluate the goodness of fit of the models, were calculated. The Deviation Information 

Criterion (DIC) was also considered, which can be used to select candidate models; models 

with lower DIC are preferred to models with higher DIC(24). 

 

Software and model fitting 

 

The quantile regression models were fitted using a computational strategy similar to that 

described by Pérez-Rodríguez et al(10). Adaptations of algorithms to include fixed and 

random effects do not present great computational difficulty. The codes for the fitting of the 
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models were developed in the programming languages R(25) and C. The codes for the fitting 

of the models were organized in such a way that they can be easily run from the statistical 

software R and are available by requesting them to the first author of the present study. In all 

cases, three quantiles were selected, 𝜃 = {0.25, 0.50, 0.75}. The GBLUP and ssGBLUP 

models were fitted with the BGLR library of R(26). 

 

Results 
 

Real data 

 

Tables 2, 3, and 4 show the results of the experiment conducted with BW, WW, and YW 

data from a Braunvieh cattle population, evaluated under two scenarios 1) with marker 

information only, and 2) marker and pedigree information. In general, the highest correlations 

between observed and predicted values were obtained with QR, except for BW, where the 

correlations of GBLUP and ssGBLUP were higher than those obtained with QRM and QRH, 

however, the correlations of QRM 𝜃 = 0.75 and QRH 𝜃 = 0.75 were close to those obtained 

with GBLUP and ssGBLUP (0.7902 vs 0.7924), (0.6981 vs 0.7055), respectively. The lowest 

MSE values were obtained with QRM 𝜃 = 0.75 and QRH 𝜃 = 0.75 in the WW 

characteristic, while in the BW and YW characteristics, the lowest values were obtained with 

GBLUP and ssGBLUP. The variance components associated with the error obtained with 

QRM and QRH were lower than those obtained with GBLUP and ssGBLUP. In general, the 

lowest DIC values were obtained with QRM 𝜃 = 0.75 and QRH 𝜃 = 0.75, except for BW 

with the markers-only scenario, where the lowest DIC was obtained with QRM 𝜃 = 0.25. 

  



Rev Mex Cienc Pecu 2023;14(1):172-189 
 

181 

Table 2: Averages of Pearson correlation and standard deviation (in parentheses) between 

observed phenotypic values (𝒚) and predicted phenotypic values (𝒚̂), mean squared error, 

variance components associated with the error (𝜎𝑒
2, 𝜎𝑤

2  ) and deviation information criterion 

(DIC) for birth weight 

Model Cor(𝒚, 𝒚̂) MSE 𝝈𝒆
𝟐 or 𝝈𝒘

𝟐  DIC 

QRM 𝜽 = 𝟎. 𝟐𝟓 0.7521 3.9973 2.7260 513.5014 

 (0.0753) (1.6108) (1.9762) (531.5701) 

QRM 𝜽 = 𝟎. 𝟓𝟎 0.5619 7.3249 8.6297 970.7680 

 (0.1501) (0.4561) (0.2660) (6.9791) 

QRM 𝜽 = 𝟎. 𝟕𝟓 0.7902 3.6535 2.4268 716.4237 

 (0.0766) (0.0943) (0.4829) (35.7161) 

GBLUP 0.7924 2.3269 3.0035 803.0675 

 (0.0874) (0.2063) (0.5578) (31.9814) 

QRH 𝜽 = 𝟎. 𝟐𝟓 0.6713 3.5026 2.3645 872.3949 

 (0.1329) (1.2848) (1.9670) (432.0737) 

QRH 𝜽 = 𝟎. 𝟓𝟎 0.6816 2.9988 2.7372 659.1450 

 (0.1253) (0.7769) (1.8239) (1079.8674) 

QRH 𝜽 = 𝟎. 𝟕𝟓 0.6981 4.1405 2.8610 1077.2027 

 (0.1140) (0.6187) (0.8666) (60.6781) 

ssGBLUP 0.7055 2.4463 3.2641 1189.4282 

 (0.1191) (0.2204) (0.4244) (26.5023) 

Cor(𝜷, 𝜷̂)=correlation between observed and predicted phenotypes, MSE=mean squared error, 𝜎𝑒
2 or 

𝜎𝑤
2 =components of variance associated with the error, DIC=deviation information criterion. 

 

Table 3: Averages of Pearson correlation and standard deviation (in parentheses) between 

observed phenotypic values (𝒚) and predicted phenotypic values (𝒚̂), mean squared error, 

variance components associated with the error (𝜎𝑒
2, 𝜎𝑤

2  ) and deviation information criterion 

(DIC) for weaning weight 

Model Cor(𝒚, 𝒚̂) MSE 𝝈𝒆
𝟐 or 𝝈𝒘

𝟐  DIC 

QRM 𝜽 = 𝟎. 𝟐𝟓 0.5661 476.5293 419.4138 1550.5339 

 (0.2212) (17.4612) (23.3216) (13.9644) 

QRM 𝜽 = 𝟎. 𝟓𝟎 0.5695 357.7328 396.8138 1576.8871 

 (0.2307) (8.9681) (47.7433) (21.5826) 

QRM 𝜽 = 𝟎. 𝟕𝟓 0.5493 175.1298 67.9660 737.2216 

 (0.2196) (47.6181) (82.0807) (1150.7340) 

GBLUP 0.5677 294.5807 376.7794 1583.2355 

 (0.2377) (36.6279) (24.1379) (16.2187) 

QRH 𝜽 = 𝟎. 𝟐𝟓 0.4816 644.1278 551.5150 1962.1296 

 (0.0672) (50.8464) (64.8091) (20.9916) 

QRH 𝜽 = 𝟎. 𝟓𝟎 0.4797 366.5940 356.9005 1537.7760 

 (0.0274) (56.8604) (238.5303) (903.3492) 

QRH 𝜽 = 𝟎. 𝟕𝟓 0.3918 216.1753 5.9471 -706.1573 
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 (0.0544) (53.2417) (11.7834) (2034.7757) 

ssGBLUP 0.4712 303.0404 421.8316 1982.3314 

 (0.0502) (37.6933) (55.2774) (21.9229) 

Cor(𝜷, 𝜷̂)=correlation between observed and predicted phenotypes, MSE=mean squared error, 𝜎𝑒
2 or 

𝜎𝑤
2 =components of variance associated with the error, DIC=deviation information criterion. 

 

Table 4: Averages of Pearson correlation and standard deviation (in parentheses) between 

observed phenotypic values (𝒚) and predicted phenotypic values (𝒚̂), mean squared error, 

variance components associated with the error (𝜎𝑒
2, 𝜎𝑤

2  ) and deviation information criterion 

(DIC) for yearling weight 

Model Cor(𝒚, 𝒚̂) MSE 𝝈𝒆
𝟐 or 𝝈𝒘

𝟐  DIC 

QRM 𝜽 = 𝟎. 𝟐𝟓 0.5421 1037.6529 953.6807 1487.1104 

 (0.1350) (175.2648) (261.8652) (35.8873) 

QRM 𝜽 = 𝟎. 𝟓𝟎 0.5341 868.3651 964.4477 1524.0511 

 (0.1355) (34.0429) (113.1832) (12.4648) 

QRM 𝜽 = 𝟎. 𝟕𝟓 0.5115 938.8244 700.7849 1284.0829 

 (0.1290) (241.2205) (465.2109) (402.9787) 

GBLUP 0.5330 725.7579 924.8388 1526.7596 

 (0.1389) (71.3999) (90.0089) (11.6346) 

QRH 𝜽 = 𝟎. 𝟐𝟓 0.5306 1277.9493 1172.2877 1850.7122 

 (0.1411) (44.0948) (108.7991) (17.2025) 

QRH 𝜽 = 𝟎. 𝟓𝟎 0.5098 894.4148 1061.3157 1883.6773 

 (0.1700) (35.3996) (129.4702) (15.4422) 

QRH 𝜽 = 𝟎. 𝟕𝟓 0.5027 915.1871 666.8830 1706.4933 

 (0.1748) (162.7629) (413.5046) (209.8455) 

ssGBLUP 0.4712 778.6416 1071.3096 1891.9029 

 (0.0502) (84.9871) (128.2878) (17.5592) 

Cor(𝜷, 𝜷̂)=correlation between observed and predicted phenotypes, MSE=mean squared error, 𝜎𝑒
2 or 

𝜎𝑤
2 =variance components associated with the error, DIC=deviation information criterion. 

 

Simulated data 

 

The results of the simulation exercise where QR is compared with GBLUP under different 

degrees of asymmetry and proportions of outliers are shown in Table 5. Column 2 records 

the correlations between the “true” marker effects and the estimated marker effects, the 

correlations obtained with QR were higher than those obtained with GBLUP. Column 3 

shows the correlations between the “true signals” and the estimated ones, the highest 

correlations were obtained with QR. Column 4 records the estimation of the variance 

components associated with the error and column 5 the DIC values, the lowest values in both 

columns were obtained with QR 𝜃 = 0.75. 
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Table 5: Averages of Pearson correlation and standard deviation (in parentheses) between 

“true” and estimated marker effects, “true” and estimated signals, variance components 

associated with the error and DIC values for simulated data with different degrees of 

asymmetry and proportion of outliers 

Model Cor(𝜷, 𝜷̂) Cor(𝑿𝜷, 𝑿𝜷̂) 𝝈𝒆
𝟐 or 𝝈𝒘

𝟐  DIC 

𝝆 = 𝟎. 𝟗𝟓, 5% outliers 

QR 𝜽 = 𝟎. 𝟐𝟓 0.0784 0.4963 0.6821 620.5455 

 (0.0034) (0.0336) (0.1806) (49.3305) 

QR 𝜽 = 𝟎. 𝟓𝟎 0.0766 0.4643 0.6644 665.8219 

 (0.0042) (0.0493) (0.0703) (16.3032) 

QR 𝜽 = 𝟎. 𝟕𝟓 0.0606 0.4269 0.1438 290.6870 

 (0.0132) (0.0386) (0.1421) (148.9695) 

GBLUP 0.0722 0.4910 0.7375 691.6503 

 (0.0064) (0.0398) (0.0723) (19.9391) 

𝝆 = 𝟎. 𝟗𝟓, 10% outliers 

QR 𝜽 = 𝟎. 𝟐𝟓 0.0614 0.4369 0.4683 407.6496 

 (0.0183) (0.0329) (0.4030) (330.6304) 

QR 𝜽 = 𝟎. 𝟓𝟎 0.0728 0.4579 0.7947 706.7931 

 (0.0045) (0.0420) (0.1063) (20.5797) 

QR 𝜽 = 𝟎. 𝟕𝟓 0.0574 0.4061 0.4482 381.4644 

 (0.0092) (0.0399) (0.3225) (474.7138) 

GBLUP 0.0654 0.4556 0.8717 731.9104 

 (0.0057) (0.0314) (0.0890) (21.8563) 

𝝆 = 𝟎. 𝟗𝟕𝟓, 5% outliers 

QR 𝜽 = 𝟎. 𝟐𝟓 0.0773 0.4835 0.5578 582.4254 

 (0.0087) (0.0562) (0.2523) (83.0548) 

QR 𝜽 = 𝟎. 𝟓𝟎 0.0771 0.4689 0.6369 662.0337 

 (0.0074) (0.0515) (0.0868) (23.8018) 

QR 𝜽 = 𝟎. 𝟕𝟓 0.0598 0.4169 0.2398 219.1691 

 (0.0128) (0.0450) (0.2033) (444.5060) 

GBLUP 0.0703 0.4804 0.7316 692.6392 

 (0.0056) (0.0333) (0.0831) (24.0645) 

𝝆 = 𝟎. 𝟗𝟕𝟓, 10% outliers 

QR 𝜽 = 𝟎. 𝟐𝟓 0.0731 0.4386 0.8739 677.0858 

 (0.0081) (0.0789) (0.1077) (23.5472) 

QR 𝜽 = 𝟎. 𝟓𝟎 0.0734 0.4529 0.8154 711.2935 

 (0.0078) (0.0615) (0.0845) (14.9809) 

QR 𝜽 = 𝟎. 𝟕𝟓 0.0541 0.3945 0.3628 385.6030 

 (0.0056) (0.0583) (0.2572) (393.1935) 

GBLUP 0.0640 0.4491 0.8913 736.7880 

 (0.0077) (0.0517) (0.0654) (14.8343) 

𝝆 = 𝟎. 𝟗𝟗𝟗, 5% outliers 

QR 𝜽 = 𝟎. 𝟐𝟓 0.0615 0.5286 0.1535 205.6973 
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 (0.0144) (0.0271) (0.1657) 277.5807 

QR 𝜽 = 𝟎. 𝟓𝟎 0.0741 0.5514 0.4860 614.2282 

 (0.0037) (0.0167) (0.0663) 15.7647 

QR 𝜽 = 𝟎. 𝟕𝟓 0.0467 0.4855 0.0166 -271.4761 

 (0.0112) (0.0150) (0.0192) 288.4509 

GBLUP 0.0737 0.5428 0.5305 625.9703 

 (0.0030) (0.0121) (0.0353) 11.3632 

𝝆 = 𝟎. 𝟗𝟗𝟗, 10% outliers 

QR 𝜽 = 𝟎. 𝟐𝟓 0.0768 0.4807 0.7817 650.8593 

 (0.0080) (0.0687) (0.0888) 22.8417 

QR 𝜽 = 𝟎. 𝟓𝟎 0.0696 0.4630 0.6154 511.5287 

 (0.0148) (0.0600) (0.3369) 412.6645 

QR 𝜽 = 𝟎. 𝟕𝟓 0.0507 0.3967 0.0204 -160.1660 

 (0.0031) (0.0505) (0.0127) 213.0462 

GBLUP 0.0659 0.4649 0.7876 709.7240 

 (0.0065) (0.0418) (0.0528) 14.8566 

Cor(𝜷, 𝜷̂)=correlation between “true” and estimated marker effects, Cor(𝑿𝜷, 𝑿𝜷̂)=correlation between “true” 

and estimated signals, 𝝈𝒆
𝟐 or 𝝈𝒘

𝟐 =variance components associated with the error, DIC=deviation information 

criterion. 

 

Discussion 

 

In this study, QR analysis methodologies were compared with GBLUP and ssGBLUP. This 

comparison was made with simulated phenotypes with different degrees of asymmetry and 

proportions of outliers and actual data for birth, weaning and yearling weights. 

 

Real data 

 

The observed and predicted phenotype correlations obtained from cross-validation with 

actual data were higher when using QRM and QRH in the WW and YW characteristics. For 

BW, the highest correlations were obtained with GBLUP and ssGBLUP; however, in this 

study, only three quantiles 0.25, 0.50 and 0.75 were tested, there is evidence in other studies 

where QR is better than GBLUP, as in the case of the work of Nascimento et al(4), who 

compared QR with models such as BLASSO, BayesB and RR-BLUP. These authors found 

a 15.15 % gain in the predictive capacity of QR compared to RR-BLUP, it should be noted 

that, mathematically, RR-is equivalent to GBLUP, in addition to the fact that the datasets 

used in this experiment presented asymmetry. 

 

The values of the mean squared error (MSE) measure the average of the squared error, that 

is, the difference between the estimator and what is estimated, so low values are preferred; 

the MSE averages of QRM and QRH were lower than those obtained with GBLUP and 

ssGBLUP only for WW. The residual variance estimator is an indication that how well or 
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poorly the model fits the observed data, low values are preferred; the smallest variance 

components of the error were obtained with QRM and QRH for the three characteristics 

analyzed. Finally, the DIC value is used to select candidate models and, like MSE and error 

variance components, low values are preferred. The lowest DIC values were obtained with 

QRM 𝜃 = 0.75 and QRH 𝜃 = 0.75, except in the marker-only scenario and BW, where the 

lowest DIC was obtained with QRM 𝜃 = 0.25. The mean squared error, the residual variance 

and the DIC are values that help to choose the best fit model. When examining these values 

together, it is observed that QRM and QRH are better in some of them, while in others they 

are not, that is, QR has a performance equal to or greater than GBLUP and ssGBLUP; 

although it should be noted that only three quantiles were tested and that QR has advantages 

when used in asymmetric data and outliers, for this case there were only outliers and the 

distributions did not present asymmetry. Mendes et al(27) compared QR with the Bayesian 

method of LASSO (BLASSO), these authors reported a 6.7 % and 20.0 % increase in 

accuracy and considered quantiles 0.15 and 0.45 in the evaluation of carcass yield and bacon 

thickness, respectively, however, the characteristics evaluated in their study were 

asymmetric. 

 

In the analysis of real data, a limitation of the present study is the sample size, which can 

impact the variability of the parameters estimated with the models and consequently the 

variability of the predictions, however, all the models were fitted using the same information 

and therefore the comparison of the predictive capacity of the models is considered 

reasonable, the ideal would be to have large sample sizes, but, due to economic limitations, 

this is not always possible. On the other hand, it is currently very common to use prediction 

models in which the number of phenotypic records is smaller than the number of predictors 

(SNPS), that is 𝑛 ≪ 𝑝, even in this context, numerous studies have shown that Bayesian 

methods provide sophisticated tools that allow deriving reasonable predictions as long as the 

regularization parameters are selected properly, for example using cross-validation 

methods(28–30). 

 

Simulated data 

 

In the simulated data experiment, the correlations between “true” marker effects and 

estimated effects as well as correlations of “true” and estimated signals were higher when 

QR was used compared to GBLUP. These results are similar to those obtained by other 

researchers(10), who simulated data with three different coefficients of asymmetry 0.75, 0.95, 

0.999 with 5 % and 10 % of outliers and found that the correlations obtained with QR were 

higher than those obtained with Bayesian ridge regression (BRR), in addition, this pattern 

was more evident with a greater asymmetry and proportion of outliers. In this study, 

simulations with asymmetry coefficients of 0.950, 0.975, 0.999 were carried out and the 

quantiles with which higher correlations were obtained varied between 0.25 and 0.50; the 
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advantage of QR is that different quantiles can be tested, obtaining better results depending 

on the quantile used, this advantage in the ability to predict the effects of markers and signals 

has been taken advantage of by other researchers(4) , who found no trait association using the 

traditional GWAS model of single SNP, but, when using QR with extreme quantiles such as 

0.1, the model was able to find up to 7 SNPs associated with the characteristics studied. 

 

The coefficients of variance of the error indicate how well the proposed model fits the studied 

data, the smaller this value, the better the fit, the DIC is another value that is used to compare 

candidate models. Models with a smaller DIC are preferred to models with a larger DIC(24). 

The lowest residual variance estimators and DIC values were obtained with QR 𝜃 = 0.75, 

perhaps this is because high asymmetry coefficients 0.950, 0.975, 0.999 were used in the 

simulation, so therefore a quantile that fits best is expected to be the highest, in this case 0.75. 

QR performed equally or better than GBLUP and ssGBLUP to predict growth characteristics 

BW, WW and YW, the advantages of this method are more noticeable when the data are 

more biased and present a higher proportion of outliers, as in the case of the simulation 

experiment. 

 

Conclusions and implications 
 

The predictive performance of QR both with marker information alone and with information 

of markers plus pedigree, with the actual dataset, was better than the GBLUP and ssGBLUP 

methodologies for WW and YW. For BW, GBLUP and ssGBLUP were better; however, 

only quantiles 0.25, 0.50 and 0.75 were used, and the BW distribution was not asymmetric. 

In the simulated data experiment, correlations between “true” marker effects and estimated 

effects, as well as correlations of “true” and estimated signals were higher when QR was used 

compared to GBLUP. The advantages of QR were more noticeable with asymmetric 

distribution of phenotypes and with a higher proportion of outliers, as was the case with the 

simulated dataset. 
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